
Bachelor Informatica

Software Engineering with PSF
and Go

Erik van der Schaaf

June 8, 2016

Supervisor(s): Bob Diertens (UvA)

Signed: Bob Diertens (UvA)

In
f
o
r
m
a
t
ic
a
—

U
n
iv
e
r
si
t
e
it

v
a
n
A
m
st

e
r
d
a
m

2

Abstract

In this thesis I designed an application using the software engineering with pro-
cess algebra method. I use PSF for a high level of abstraction and Go for a low
level of abstraction. The system I implemented is based on the BHS located
at Amsterdam Airport Schiphol. This system consists of multiple components
working together on a concurrent level.
I specified the system in PSF, and refined this specification into an implemen-
tation in Go. In the refinement from PSF to Go I found several patterns.

2

Contents

1 Introduction 5
1.1 Outline . 6

2 Process Specification Formalism 7
2.1 Background . 7
2.2 Used functionalities . 7

2.2.1 Modules . 8
2.2.2 Sorts and functions . 8
2.2.3 Variables and equations 9
2.2.4 Processes . 9
2.2.5 Atoms . 9
2.2.6 Sets . 9
2.2.7 Communication and encapsulation 10
2.2.8 Definitions . 10

3 Go 13
3.1 Background . 13
3.2 Used functionalities . 13

3.2.1 Functions and imports . 14
3.2.2 Constants, structures and variables 14
3.2.3 If...Else statements and for loops 15
3.2.4 Concurrency and channels 16

4 Baggage handling system 19
4.1 Schiphol . 19
4.2 My baggage handling system . 19

4.2.1 Check-in . 20
4.2.2 Screening . 20
4.2.3 Transport and sorting . 20
4.2.4 Transfer baggage . 21

5 Implementation 23
5.1 The process . 23
5.2 PSF . 23

3

5.2.1 Step 1: Transporting over a single conveyor belt 25
5.2.2 Step 2: Sorting machines sending in a random direction . 27
5.2.3 Step 3: Sorting machines sending in a specified direction . 29

5.3 Go . 31
5.3.1 Step 1: Transporting over a single conveyor belt 33
5.3.2 Step 2: Sorting machines sending in a random direction . 34
5.3.3 Step 3: Sorting machines sending in a specified direction . 36

6 Results 39
6.1 Processes . 39
6.2 Communication . 40
6.3 Equations . 40

7 Conclusion 43

Bibliography 43

4

Chapter 1

Introduction

I engineered and developed a program using the software engineering with pro-
cess algebra (SE-PA) method [1]. This method uses multiple levels of abstrac-
tion. I started on a high level of abstraction and worked my way to the lower
levels of abstraction. With the use of the SE-PA method I was able to deal
with the complexity of the problem and the solution. On these high levels of
abstraction I described the behaviour of the system using process algebra. I
used the Process Specification Formalism (PSF) [2] for this. I sought a way to
implement these different specifications on multiple levels of abstraction to the
programming language Go.

PSF comes with an important Toolkit. One of its tools is a simulator that
can be coupled with an animation of the specification. [3] I used PSF because
it allows me to start testing in an early stage of the design process using this
simulator. The opportunity to test early in the design process prevents from
errors getting into a lower level of abstraction.

The reason why I chose Go as target language for the specification in the
lower abstraction levels, is the ease of implementing concurrent functions. This
relatively new programming language uses channels, making it possible for con-
current functions to communicate. All these functionalities I used are built-in
with Go and thus easy to use.

As subject for my program I used the baggage handling system (BHS) of
Amsterdam Airport Schiphol [4]. There are a lot of different components work-
ing together on a concurrent level, with a lot of communication between these
components. Most of the work is automated and the system is suitable to split
into different levels of abstraction.

My research question is to develop an application with the use of the software
engineering with process algebra method for a baggage handling system with
Go as target programming language.

5

1.1 Outline

First I will explain some more about PSF in chapter 2. In chapter 3 I tell
more about the programming language Go. Next, in chapter 4, I will explain
the different components of the BHS I implemented. Chapter 5 presents my
implementation of the application. In chapter 6 I will show the results I found
during my research. Chapter 7 will conclude this thesis.

6

Chapter 2

Process Specification
Formalism

In this chapter I will give a short description about Process Specification Formal-
ism (PSF). I will also explain some functions I used from PSF for my program.

2.1 Background

In 1985 Sjouke Mauw started his research in the field of algebraic techniques for
software specification. The goal was to create a tool that could improve soft-
ware development using process algebra by aiding in specification, simulation,
verification and implementation, or even automate it. As input language for
such tools Sjouke Mauw designed PSF. His doctoral thesis covers this research
[2].

PSF is still used at the University of Amsterdam nowadays. PSF supports
Algebra of Communication Processes (ACP) and the part of PSF that deals with
the description of data is based on Algebraic Specification Formalism (ASF).
The main use for PSF is in communication protocols, but it can also be used in
the specification of different systems. Examples and more information can be
found on the website of PSF [3].

2.2 Used functionalities

I will not cover all the functionalities of PSF, but I will explain what I have
used. For a description covering all of PSF I refer to the PhD thesis of Sjouke
Mauw [2].

7

2.2.1 Modules

PSF has two different types of modules, the data module and the process mod-
ule. A module consists of a predefined order of sections. Words in italics are
identifiers that should be filled in. I use · · · to represent a list of elements. The
different sections are explained in the chapters that follow.

1 data module Module
2 begin
3 sorts
4 · · ·
5 functions
6 · · ·
7 variables
8 · · ·
9 equations

10 · · ·
11 end Module
12

13 process module Module
14 begin
15 atoms
16 · · ·
17 processes
18 · · ·
19 sets
20 · · ·
21 communications
22 · · ·
23 variables
24 · · ·
25 definitions
26 · · ·
27 end Module

2.2.2 Sorts and functions

The sorts section consists of a comma separated list, like the one below.

1 sorts
2 S,
3 DATA

Functions work with these sorts declared in a data module. It is possible
to make function calls with arguments, they should be separated by a hashtag
(#). The result of the function is indicated with an arrow (->).

1 functions
2 f : −> S
3 f : DATA −> S
4 f : S # DATA −> S

8

2.2.3 Variables and equations

The next section is the variable section. This section varies whether it is used
in the data module or the process module. Inside the data module the variable
section lists the variables used in the equations. When used in the process
module the variable section lists the variables used in the process definitions.

1 variables
2 x : −> S

Equations can give a definition of a function. PSF is a language with a term
rewrite system. Equations apply this rule and so the left hand side is rewritten
to the right hand side. It is also possible to use variables defined in the variable
section. Below I have given two examples for defining an and function. The
tags in front of the equation are for documentation purposes only and it does
not matter what you fill in.

1 equations
2 [and1] and (f a l s e , f a l s e) = f a l s e
3 [and2] and (f a l s e , t rue) = f a l s e
4 [and3] and (t r u e , f a l s e) = f a l s e
5 [and4] and (t r u e , t rue) = true
6

7 [and1] and (f a l s e , x) = f a l s e
8 [and2] and (t r u e , x) = x

2.2.4 Processes

In the process section you can declare the processes. Processes can have argu-
ments separated by a hashtag.

1 processes
2 p
3 p : S
4 p : DATA # S

2.2.5 Atoms

Atoms are actions that processes can execute. Atoms are declared the same way
as processes, arguments are separated by hashtags.

1 atoms
2 a
3 a : S
4 a : DATA # S

2.2.6 Sets

Sets contain sub-sections, the sets indicate the type of the set declared in his
sub-section. There are various ways to fill a set as seen below.

9

1 sets
2 o f atoms
3 H = set-expression
4 o f S
5 D = set-expression
6 E = set-expression
7

8 Set-expressions:
9 sort S

10 a l l e lements o f the s o r t S
11 set S
12 a l l e lements o f the s e t S
13 enumeration {e1, e2, · · · , en}
14 p l a c eho l d e r s can be used
15 H = {a (x) , b (y) | x in S, y in DATA}
16 union S + T
17 intersection S · T
18 difference S \ T

2.2.7 Communication and encapsulation

The communication section contains two communication partners separated by
a ’|’ and the resulting action of that communication. This form of communica-
tion is used so that processes have to wait for both communications to be done,
before they can perform the same action again.

1 communications
2 a | b = c
3 a (x) | b(x) = c (x) for x in S
4 a (x) | b(y) = c (x , y) for x in S, y in S

Encapsulation is used to limit the actions for process expressions. In the
example below only the process can only execute actions from the process ex-
pression x that are not an element of set H. The definitions section is displayed
in the next section.

1 definitions
2 P = encaps (H,x)

2.2.8 Definitions

The definitions section consists of process definitions, on the left hand side it
states the process and on the right side its definition. The processes can have
variables from the variables section as arguments. The list of process expressions
is long, so I only list the ones that I have used.

1 definitions
2 P = process-expression
3 P(x) = process-expression
4 P(f (b) , b (y)) = process-expression
5

10

6 Process-expressions (some of them):
7 atomic action a
8 Executes atomic ac t i on a
9 deadlock delta

10 Deadlocks can not be executed
11 process P
12 The process P i s r ep l aced with the d e f i n i t i o n o f that
13 process in the d e f i n i t i o n s e c t i o n .
14 sequential composition x . y
15 F i r s t process exp r e s s i on x i s executed , upon terminat ion
16 process exp r e s s i on y i s executed .
17 alternative composition x+y
18 One o f the process exp r e s s i on s x and y i s executed . The cho i c e
19 i s random, but choos ing a deadlock i s fo rb idden .
20 parallel composition x | |y
21 process e xp r e s s i on s x and y are executed p a r r a l l e l , t h i s a l l ows
22 communications to e x i s t .
23 generalized alternative composition sum(v in S,x)
24 The process exp r e s s i on x in which v i s r ep laced by the va l u e ,
25 i s executed as an a l t e r n a t i v e compos i t i on , for every
26 value o f v in the s o r t or s e t S .
27 generalized parallel composition merge(v in S,x)
28 This i s almost the samen as a g en e r a l i z e d a l t e r n a t i v e
29 compos i t i on , but the process exp r e s s i on x i s executed
30 as an p a r r a l l e l compos it ion in s t ead o f
31 an a l t e r n a t i v e compos it ion .
32 conditional expression [t=u] -> x
33 I f the terms t and u are equa l , process exp r e s s i on x i s
34 executed . I f the terms are not equal the process
35 exp r e s s i on conta in s deadlock .

11

12

Chapter 3

Go

In this chapter I will explain who is developing Go language and why they are
developing Go in the first place. I will also explain some functions I used from
the Go language.

3.1 Background

Go or golang is a programming language created by Google engineers. Go is
an open source project that became public on November 10, 2009 [5]. The
first stable release of Go 1 was released on March 28, 2012. The current Go
1.6 is released in February of 2016 [6]. The motivation for creating this new
programming language was the waiting time for a large Google server to compile.
The most important goal for Go from the start was to be able to build Go code
using only the source itself, no makefiles or a modern replacement for makefile is
needed [7]. ”Go is efficient, scalable, and productive.” is what Rob Pike said in
his keynote talk at the SPLASH 2012 conference in Tucson, Arizona, on October
25, 2012 [8]. Rob Pike is one of the creators of Go.

3.2 Used functionalities

Go has a lot of functionalities thanks to the project being open source. Because
there are so many, I will only go over the functionalities I have used for my pro-
gram. There is a documentation on the website of Go for all the functionalities
[9]. The book written by Mark Summerfield ”Programming in Go” also covers
a lot about the programming language Go [10].

It is possible to use comments in the code. Everything after ”//” is seen as
a comment and thus ignored.

13

3.2.1 Functions and imports

If you execute a Go program it will always start with the main function. So
every program should have a main function and package main. You could also
create more additional functions beside the required main function. There is
also room for importing more packages for more functionality. If you import
new packages, you will be able to use their functionalities on top of the built-in
functionalities.

1 // Every Go program needs a package main
2 package main
3

4 // Importing mu l t ip l e packages
5 import (
6 ”packages 1”
7 ”packages 2”
8 ”path/ f i l e p a t h 1”
9 ”path/ f i l e p a t h 2”

10)
11

12 // The main func t i on
13 func main () {
14

15 }
16

17 // A standard func t i on layout
18 func functionName (arguments) {
19

20 }

3.2.2 Constants, structures and variables

Another standard functionality are constants and variables. It is possible to
declare them at a global (package) or a function level. You need to state the
type of the variable or constant. If you do not declare a variable but you only
initialize the variable, then Go will automatically declare a variable with the
type you are trying to assign to the variable. Constants need to be declared and
initialized the first time you use them, because constants can not change value.
Inside functions you can initialize variables with a second method, the short
assignment statement ”:=”. Declaration is skipped and automatically done by
Go. The second method does not work with constants or outside functions.

1 // Simple v a r i ab l e
2 var varName in t
3 var varName2 s t r i n g
4

5 // Simple constant
6 const constName in t = 1
7 const constName2 s t r i n g = ” constant 2”
8

9 // Same can be done in a func t i on
10 func functionName (arguments) {
11 var varName3 i n t

14

12 var varName4 s t r i n g
13

14 varName5 := 3
15 varName6 := ” va r i ab l e 6”
16

17 const constName3 i n t = 3
18 const constName4 s t r i n g = ” constant 4”
19 }

Object oriented programming is a well known concept. Go makes object
oriented programming possible with structures. These structures are collections
of fields. You can give these structures your own type. Declaring your own types
opens up a lot of new possibilities, because you are not bound to the standard
variable types. It is also possible to make new functions working with these
structures. These functions use a structure to operate and can only be executed
with the use of a structure.

1 // Simple s t r u c tu r e
2 type structType s t r u c t {
3 variableName in t
4 variableName2 s t r i n g
5 }
6

7 // A func t i on working with the s t r u c tu r e
8 func (structName ∗ structType) functionName () {
9 // Here you could do something l i k e p r i n t s t r u c t

10 fmt . Pr in t ln (” I n t : ” , structName . variableName)
11 fmt . Pr in t ln (” S t r i n g : ” , structName . variableName2)
12 }
13

14 // This i s how you execute the func t i on
15 t e s t := structType {
16 variableName: 3 ,
17 variableName2: ”Test ” ,
18 }
19 t e s t . functionName ()

3.2.3 If...Else statements and for loops

The if and else statements are pretty standard. The expression need not be
surrounded by parentheses but the braces are required.

1 i f x == 0 {
2 // x i s ze ro
3 } e l s e i f x > 0 {
4 // x i s g r e a t e r than zero
5 } e l s e {
6 // x < 0
7 }

The for loop is the only looping construct Go has. The for loop has three
components and a body. The components are separated by semicolons. The first
component is the init statement, this component is executed before the iteration

15

and usually contains a short variable declaration. The second component is the
condition expression, the for loop will stop iterating when this expression returns
false. The last component is the post statement, this component is executed
after each iteration and is generally used for changing the step counter. You
can create a while loop by dropping the first and the last component. If you
drop all components you have created an infinite loop.

1 // Standard f o r loop
2 f o r i := 0 ; i < max ; i++ {
3

4 }
5

6 // While loop
7 f o r i < max {
8

9 }
10

11 // I n i f i n i t e loop
12 f o r {
13

14 }

3.2.4 Concurrency and channels

It is possible to execute functions concurrent in Go. It uses the idea of threads,
but everything is managed by the Go runtime. Because you do not have to
manage everything yourself it is easy to use. Goroutines run in the same address
space, so shared memory should be synchronized manually, but Go provides
packages with useful primitives.

1 // A standard func t i on layout
2 func functionName (arguments) {
3

4 }
5

6 // The main func t i on
7 func main () {
8 // New gorout ine execute s the func t i on
9 go functionName (arguments)

10 // The main execut i on s cont inues here
11 // concurrent with the gorout ine
12 }

Apart from the fact that you can execute functions concurrent in a very easy
manner with Go, it also has channels. A channel is a first in first out (FIFO)
buffer. You can send values to the channel and read from the channel if it is not
empty. The channel operator is an arrow (<-) and the data flows in the direction
of the arrow. Channels are a good way to let goroutines communicate with each
other. If you do not specify a limit for the channel it will be unbuffered, the
capacity is zero and thus you are able to synchronize between goroutines. You
could also give a second argument, this is the size of the buffer. You can close
the channels if you are done or do not need them anymore.

16

1 // Creat ing an i n f i n i t e channel
2 channelName := make(chan i n t)
3 // Creat ing a l im i t ed channel
4 channelName2 := make(chan s t r i n g , 100)
5 // I t i s a l s o p o s s i b l e to make a channel from your s t r u c t
6 channelName3 := make(chan structType)
7

8 // Sending something on the channel
9 channelName <− something

10 channelName2 <− something
11

12 // Rece iv ing from the channel
13 va r i ab l e 1 := <− channelName
14 va r i ab l e 2 := <− channelName2
15

16 // Clos ing channe l s
17 c l o s e (channelName)
18 c l o s e (channelName2)

Sending and receiving are not the only things you can do with a channel.
The first functionality I used for the receivers is the range functionality. Range
is combined with the for loop. The for loop will continue to receive everything
that gets send on the channel, until the channel is closed.

1 // Keep l i s t e n i n g f o r va lue s send on the channel
2 f o r va lue := range channelName {
3 // Do something with the value
4 }

Another functionality I have used is the select statement. I use the select
statement to receive from multiple channels at once. A select statement blocks
until one of its cases can run, that is the case that will be executed. If more than
one cases match, the select statement executes one random from the matched
cases.

1 // L i s t en ing f o r two channe l s
2 s e l e c t {
3 case va lue := <− channelName:
4 // Received from channelName
5 case va lue := <− channelName2:
6 // Received from channelName2
7 }

17

18

Chapter 4

Baggage handling system

In this chapter I will explain what a baggage handling system (BHS) is and
what it does. I am using the BHS located at Amsterdam Airport Schiphol as
an example.

4.1 Schiphol

On an annual basis, Schiphol handles over 50 million items of baggage. The
BHS, handling all these items, is approximately as large as 26 soccer-fields
(129.500 m2) and it is possible for a suitcase to travel up to 2.5 kilometres. This
area with the BHS comprise a transport system covering over 30 kilometres.
The BHS is operated by 110 servers and are powered by almost 10.000 engines.
[11]

Schiphol was not built in a day. Starting in 1967, Schiphol built 5 main
locations for the baggage to be handled. Because of the year the locations
where built in, they contain different technical solutions for transporting the
items of baggage from the check-in to the right aeroplane. [4]

4.2 My baggage handling system

I have based my program on the technical solutions from nowadays. A system
as big as the BHS on Schiphol, has a lot of different components. I left out or
simplified some of those components, because they are done fully or partially
manual by the personnel or sometimes they do not add a significant value to
the program. In the publication by Amsterdam Airport Schiphol you can find
a more detailed description about the whole BHS located at Schiphol [4].

19

Figure 4.1: BHS Amsterdam Airport Schiphol

4.2.1 Check-in

The starting point for items of baggage is the check-in. At the check-in new
suitcases get a label with all kinds of information. The most important infor-
mation is the flight code. At Schiphol odd sized items of baggage are processed
different from the regular baggage. I do not make this exception in my program,
all suitcases are the same. When the item of baggage is labelled it is placed
onto a conveyor belt. These conveyor belts transports the items of baggage to
underground facilities.

4.2.2 Screening

The next components in line are the x-ray-screening machines. Especially nowa-
days it is very important to scan the items of baggage for unwanted items. I do
not have these machines implemented in my program, because I assume that
every item of baggage would pass the screening and thus there is no significant
value to add this component to my program.

4.2.3 Transport and sorting

The next step is transporting the baggage from the x-ray-screening machines to
the specific gate where the right aeroplane will depart from. I will distinguish
three components, the conveyor belts, the sorting machines and the end stations.

These conveyor belts are straight forward, the conveyor belt connects two
other components together. They transport the items of baggage from one end
to the other end.

The end station is not so different, it is just a straight conveyor belt rotating
at a slow pace. For every aeroplane there is a specific end station and all
suitcases that reach the end of their end station are loaded onto small baggage

20

carts. These carts are driven to the aeroplane and the personnel will load the
suitcases into the aeroplane.

The most interesting component are the sorting machines. The sorting ma-
chine has to act quickly and as accurate as possible. Multiple scanners scan the
barcode on the label of the suitcase, the sorting machine uses that information
to determine where the suitcase should go. There is one server in control of
the communication. If one of the conveyor belts brakes down the system should
react and find another way to transport the items of baggage from point A to
point B. Also the system should distribute the load evenly, as it is undesirable
that one or only a few conveyor belts transport all the baggage.

4.2.4 Transfer baggage

Because the flight codes are internationally standardized by the International
Air Transport Association (IATA) it is very easy to process transfer baggage
[12]. 40% of all the passengers arriving at Amsterdam Airport Schiphol are
transfer passengers [13]. To process all these items of baggage as fast as possi-
ble, Schiphol created special drop-off points where personnel can unload their
baggage carts. From here the transfer baggage already labelled with an IATA
flight code follows the same route as suitcases that are checked-in for departing
passengers.

21

22

Chapter 5

Implementation

In this chapter I will explain the implementation and the decisions I made during
this process.

5.1 The process

Figure 5.1: Abstraction levels of my im-
plementation

High level of abstraction PSF

Low level of abstraction

~wwwwwwwwwwwww
Go

�

wwwwwwwwwwwww

I divided the process of implementa-
tion into two levels of abstraction. I
started on an high level of abstrac-
tion in PSF. At this level I did not
care so much how everything worked,
but I designed the communication be-
tween the various components. When
the specification in PSF was imple-
mented, I started with translating
this PSF specification to the tar-
get programming language Go on an
lower level of abstraction. I found
three key points in my process. First
I tried to transport a suitcase from
point A to point B. Second was sort-
ing the suitcases, but I had the sorting machines choose a random direction.
Finally I sorted the suitcases to specific gates, where the right aeroplane was
waiting. In the following sections I will describe the code step by step following
those key points for each level of abstraction.

5.2 PSF

The PSF code is run and tested with the simulator from the Toolkit. To run
the simulator I run the following commands.

23

$ ps f −s BASsysteem
$ genanim −N −O BASsysteem BASsysteem . t i l
$ tbsim BASsysteem . t i l BASsysteem . anim

This translates the specification to an animation simulator as seen below.

Figure 5.2: PSF simulation: start screen

To start simulating you have to start the process by pressing the ”(re)start”
button. You see all the available actions appear on the right. You have three
options to execute an action. Option one is clicking the action in the list that
just appeared. Option two is using the mouse on the animation, a small list will
appear with the available actions of that process. The last option is the small
random option, just above the list. Every step a random action from the list is
executed. See the next two images for before you execute commands and after
you executed a lot of them.

24

Figure 5.3: PSF simulation: process started

Figure 5.4: PSF simulation: process stopped during random option

5.2.1 Step 1: Transporting over a single conveyor belt

The first key point I came up with was transporting a suitcase from a check-in
to a gate, over a single conveyor belt. The interesting parts are the definitions
of the processes seen below.

The check-in (Balie(bl)) can create suitcases and sends them to conveyor
belt ”B001”. The conveyor belt (Band(bd)) listens for suitcases send to it from
the check-in, if it receives a suitcases, the conveyor belt sends it to the gate.
The gate (Gate(ga)) listens for suitcases sent from the conveyor belt and if it

25

receives one it puts it into the aeroplane.

1 Bal i e (b l) =
2 sum(k in KOFFER−set,
3 check in−ko f f e r (b l , k) .
4 snd (b l , B001, k)
5) . Ba l i e (b l)
6

7 Gate (ga) =
8 sum(k in KOFFER−set,
9 sum(bd in BAND−set,

10 r e c (bd, ga , k)
11) .
12 v l i e g t u i g (ga , k)
13) . Gate (ga)
14

15 Band(bd) =
16 sum(k in KOFFER−set,
17 sum(bl in BALIE−set,
18 r e c (b l , bd, k)
19) .
20 sum(ga in GATE−set,
21 snd (bd, ga , k)
22)) . Band(bd)

Listing 5.1: PSF Step 1: check-in, gate, conveyor belt

26

5.2.2 Step 2: Sorting machines sending in a random di-
rection

Figure 5.5: PSF simulation level 2

Step two was us-
ing sorting ma-
chines, however
they did not re-
ally sort, but they
send the suitcases
in a random di-
rection. The fig-
ure on the right
gives a better vi-
sual of the lay-
out of the sys-
tem. The code
is similar to the
code of step one,
it is more of the
same, as seen in
the code snippet
below.

I added more check-ins and thus I had to specify what each check-in should
do. I created a conditional expression to check which check-in process was run-
ning. I specified which check-in should transport its suitcases to which conveyor
belts. The conveyor belts now use an alternative composition to choose a ran-
dom direction for the suitcase it receives. I did not show all the conveyor belts
in the code snippet below, because it is just more of the same. The gates are
almost the same as in step one, but sometimes they listen for multiple con-
veyor belts to send them suitcases, that is why I added a generalized alternative
composition.

1 Ba l i e (b l) =
2 (
3 [b l = BA01] −> (
4 sum(k in KOFFER−set,
5 check in−ko f f e r (b l , k) .
6 snd (b l , B001, k)
7)
8) +
9 [b l = BA02] −> (

10 sum(k in KOFFER−set,
11 check in−ko f f e r (b l , k) .
12 snd (b l , B001, k)
13)
14) +
15 [b l = BB01] −> (
16 sum(k in KOFFER−set,
17 check in−ko f f e r (b l , k) .
18 snd (b l , B002, k)

27

19)
20) +
21 [b l = BC01] −> (
22 sum(k in KOFFER−set,
23 check in−ko f f e r (b l , k) .
24 snd (b l , B003, k)
25)
26)
27) . Ba l i e (b l)
28

29 Gate (ga) =
30 (
31 [ga = GA01] −> (
32 sum(k in KOFFER−set,
33 sum(id in rec−set−GA01,
34 r e c (i d , ga , k)
35) .
36 v l i e g t u i g (ga , k)
37)
38) +
39 [ga = GB01] −> (
40 sum(k in KOFFER−set,
41 r e c (B008, ga , k) .
42 v l i e g t u i g (ga , k)
43)
44)
45) . Gate (ga)
46

47 Band(bd) =
48 (
49 [bd = B001] −> (
50 sum(k in KOFFER−set,
51 sum(id in rec−set−B001,
52 r e c (i d , bd, k)
53) .
54 (snd (bd, B004, k) + snd (bd, B005, k))
55)
56) +
57 (Ditto for the rest.)
58 +
59 [bd = B009] −> (
60 sum(k in KOFFER−set,
61 r e c (B007, bd, k) .
62 snd (bd, GA01, k)
63)
64)
65) . Band(bd)

Listing 5.2: PSF Step 2: check-in, gate, conveyor belt

28

5.2.3 Step 3: Sorting machines sending in a specified di-
rection

Figure 5.6: PSF simulation level 3

With step three
of the process I
gave the sorting
machines a condi-
tion to sort the
suitcases. I had
to make some ad-
justments and while
I was doing that
I also changed
some names I used
to project a bet-
ter simulation of
the BHS. I also
changed the lay-
out of the system,
as you can see on
the right.

First I made
sure every suit-
case got a label.
This label contains the flight code of the aeroplane the suitcase belongs to.
It is important that the system knows which aeroplane is located at which gate
number. To match aeroplanes with gate numbers I created a lookup table. A
lookup table is implemented as a dictionary with the flight code as key and the
gate number as value. The code snippet below shows how I implemented this.

1 functions
2 K : LABEL −> KOFFER
3 KL4805 : −> LABEL
4 AA77 : −> LABEL
5 MH17 : −> LABEL
6 vertrek−gate : LABEL −> ID
7 get− l abe l : KOFFER −> LABEL
8 variables
9 l : −> LABEL

10 equations
11 [1 0 1] get− l abe l (K(l)) = l
12 [2 0 1] vertrek−gate (KL4805) = GA01
13 [2 0 2] vertrek−gate (AA77) = GA02
14 [2 0 3] vertrek−gate (MH17) = GB01

Listing 5.3: PSF Step 3: Lookup table

I also made some structural decisions this step. I made a definition per
check-in process, so no more conditional expressions to check what process is
running. The rest of the check-in definitions remained the same. The gates had

29

the same makeover as the check-ins, they now have a definition for each process
individually. The conveyor belts are now named ”Sort”, because that is a more
suitable name. The sorting machines use the ”get-label” equation to read the
label from the suitcase and they use the ”vertrek-gate” equation to look up what
the direction for that label is. The code snippet below shows these changes.

1 Bal i e (BA01) =
2 sum(k in KOFFER−set,
3 check in−ko f f e r (BA01, k) .
4 snd (BA01, S001, k)
5) . Ba l i e (BA01)
6 Bal i e (BA02) =
7 sum(k in KOFFER−set,
8 check in−ko f f e r (BA02, k) .
9 snd (BA02, S001, k)

10) . Ba l i e (BA02)
11 Bal i e (BB01) =
12 sum(k in KOFFER−set,
13 check in−ko f f e r (BB01, k) .
14 snd (BB01, S002, k)
15) . Ba l i e (BB01)
16 Bal i e (BC01) =
17 sum(k in KOFFER−set,
18 check in−ko f f e r (BC01, k) .
19 snd (BC01, S003, k)
20) . Ba l i e (BC01)
21

22 Gate (GA01) =
23 sum(k in KOFFER−set,
24 r e c (S010, GA01, k) .
25 v l i e g t u i g (GA01, k)
26) . Gate (GA01)
27 Gate (GA02) =
28 sum(k in KOFFER−set,
29 r e c (S010, GA02, k) .
30 v l i e g t u i g (GA02, k)
31) . Gate (GA02)
32 Gate (GB01) =
33 sum(k in KOFFER−set,
34 r e c (S008, GB01, k) .
35 v l i e g t u i g (GB01, k)
36) . Gate (GB01)
37

38 Sort (S001) =
39 sum(k in KOFFER−set,
40 sum(id in rec−set−S001,
41 r e c (i d , S001, k)
42) .
43 (
44 [vertrek−gate (get− l abe l (k)) = GA01] −> (
45 snd (S001, S004, k)
46) +
47 [vertrek−gate (get− l abe l (k)) = GA02] −> (
48 snd (S001, S004, k)
49) +
50 [vertrek−gate (get− l abe l (k)) = GB01] −> (
51 snd (S001, S005, k)

30

52)
53)
54) . Sort (S001)
55 (Ditto for the rest.)
56 Sort (S010) =
57 sum(k in KOFFER−set,
58 sum(id in rec−set−S010,
59 r e c (i d , S010, k)
60) .
61 (
62 [vertrek−gate (get− l abe l (k)) = GA01] −> (
63 snd (S010, GA01, k)
64) +
65 [vertrek−gate (get− l abe l (k)) = GA02] −> (
66 snd (S010, GA02, k)
67) +
68 de l t a
69)
70) . Sort (S010)

Listing 5.4: PSF Step 3: check-in, gate, conveyor belt

5.3 Go

On the website of Go there is a tutorial to install Go [14]. After the installation
it is possible to use a new command in your terminal to compile Go programs.

$ go i n s t a l l g ithub . com/ user /program

When your program is compiled, it creates an executable file in the bin directory
of your workspace. When you execute the file, the results are printed in the
terminal. I let the program print out events when suitcases reach a gate. I
also built in an option to terminate the execution, by pressing ”Enter”. Upon
terminating successful I let the program print out some numbers I have collected
during the execution, about the amount of suitcases checked-in and delivered
to a certain gate. Below are some images displaying the execution process.

Figure 5.7: Go execute program: How to execute the file

Figure 5.8: Go execute program: Begin of execution

31

Figure 5.9: Go execute program: During execution

32

Figure 5.10: Go execute program: After the execution

5.3.1 Step 1: Transporting over a single conveyor belt

Go can create concurrency with goroutines. A special function-call ”go” creates
a new process executing the function it is combined with. In Go the first step was
creating the same processes that I had in PSF. In Go I also had to make some
channels to communicate between goroutines, these channels are the conveyor
belts in my program. I added an extra variable to the check-in function, this
”aantalKoffers” is an integer containing the amount of suitcases being checked-
in. To create the suitcases I use a for-loop. Like you can see in the code snippet
below.

Go is executed in the terminal and can print results. I let the program
print some numbers I collected. You can see I have two variables, ”koffersSnd”
and ”koffersRec”, they contain the number of suitcases send and number of
suitcases received. It is good to know whether indeed all your send suitcases

33

are also received.

1 func incheckba l i eA01 (B001 chan <− Ko f f e r , a an ta lKo f f e r s i n t) {
2 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
3 k := Kof f e r {
4 number: i
5 }
6 B001 <− k
7 ko f f e r sSnd++
8 }
9 }

10

11 func gateA01 (B002 <− chan Kof f e r) {
12 f o r k := range B002 {
13 fmt . Pr in t ln (”Gate A01: k” , k)
14 KoffersRec++
15 }
16 }
17

18 func so r t001 (B001 <− chan Ko f f e r , B002 chan <− Kof f e r) {
19 f o r {
20 k := <− B001
21 B002 <− k
22 }
23 }

Listing 5.5: Go Step 1: check-in, gate, conveyor belt

5.3.2 Step 2: Sorting machines sending in a random di-
rection

For the second step I used the same system layout of PSF step two.
I used a function called ”rand.Intn()” to create a random number for the sort-

ing machine. In this step I also generalised the sending and receiving channels
as function arguments. I renamed them, so I could easily add more functions.
The complexity in the code of the sorting machine is determined by the amount
of receiving channels and the amount of outgoing channels.

I let gate function print a statement every time it receives a suitcase. Printing
this information is useful for following the flow of the suitcases. I decided not
to print the suitcases in the sorting machines, because the amount of printing
statements would be too much information in the terminal.

1 func incheckba l i eA01 (snd1 chan <− Ko f f e r , a an ta lKo f f e r s i n t) {
2 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
3 k := Kof f e r {
4 number: i
5 }
6 snd1 <− k
7 ko f f e r sSnd++
8 }
9 }

10 func incheckba l i eA02 (snd1 chan <− Ko f f e r , a an ta lKo f f e r s i n t) {
11 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
12 k := Kof f e r {

34

13 number: i
14 }
15 snd1 <− k
16 ko f f e r sSnd++
17 }
18 }
19 func incheckba l i eB01 (snd1 chan <− Ko f f e r , a an ta lKo f f e r s i n t) {
20 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
21 k := Kof f e r {
22 number: i
23 }
24 snd1 <− k
25 ko f f e r sSnd++
26 }
27 }
28 func incheckba l i eC01 (snd1 chan <− Ko f f e r , a an ta lKo f f e r s i n t) {
29 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
30 k := Kof f e r {
31 number: i
32 }
33 snd1 <− k
34 ko f f e r sSnd++
35 }
36 }
37

38 func gateA01 (rec <−chan Kof f e r) {
39 f o r k := range rec {
40 fmt . Pr in t ln (”Gate A01: k” , k)
41 KoffersRec++
42 }
43 }
44 func gateB01 (r ec <−chan Kof f e r) {
45 f o r k := range rec {
46 fmt . Pr in t ln (”Gate B01: k” , k)
47 KoffersRec++
48 }
49 }
50

51 func so r t001 (rec1 <− chan Ko f f e r , r ec2 <− chan Ko f f e r , snd1 chan <−
Ko f f e r , snd2 chan <− Kof f e r) {

52 f o r {
53 s e l e c t {
54 case k := <− r e c 1 :
55 i f rand . Intn (2) == 1 {
56 snd1 <− k
57 } e l s e {
58 snd2 <− k
59 }
60 case k := <− r e c 2 :
61 i f rand . Intn (2) == 1 {
62 snd1 <− k
63 } e l s e {
64 snd2 <− k
65 }
66 }
67 }
68 }

35

69 (Ditto for the rest.)
70 func so r t009 (rec1 <− chan Ko f f e r , snd1 chan <− Kof f e r) {
71 f o r {
72 k := <− rec1
73 snd1 <− k
74 }
75 }

Listing 5.6: Go Step 2: check-in, gate, conveyor belt

5.3.3 Step 3: Sorting machines sending in a specified di-
rection

For step three in Go I also used a lookup table. It is the same idea as with PSF
to create a dictionary with the flight code as key and the gate number as value.
In go I have implemented this like below.

1 type Label s t r u c t {
2 vluchtnummer s t r i n g
3 }
4

5 type Kof f e r s t r u c t {
6 l a b e l Label
7 }
8

9 var vluchtnummerVertaler = map [s t r i n g] s t r i n g {}
10

11 vluchtnummerVertaler [”KL4805 ”] = ”GA01”
12 vluchtnummerVertaler [”AA77”] = ”GA02”
13 vluchtnummerVertaler [”MH17”] = ”GB01”

Listing 5.7: Go Step 3: Lookup table

Because I already had the same names as in PSF step three, the changes
I made this step where making sure the sorting machines sorted with the new
lookup table. I made sure the check-ins are giving the suitcases labels and I used
the same ”select/case” function as in the second step for the sorting machines
to listen to multiple channels. Below is the code snippet of the Go program
during the final step.

To create suitcases I use a nested structure. I have two structures the ”Kof-
fer” structure and the ”Label” structure, the ”Koffer” structure contains a vari-
able (label) and that variable is of the type ”Label”, so that is the nested
structure. The ”Label” structure contains a string with the IATA flight code of
the aeroplane.

1 func incheckba l i eA01 (snd chan<− Ko f f e r , IATA s t r i n g , aan ta lKo f f e r s
i n t) {

2 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
3 k := Kof f e r {
4 l a b e l : Label {
5 vluchtnummer: IATA,
6 } ,
7 }

36

8 snd <− k
9 ko f f e r sSnd++

10 }
11 }
12 func incheckba l i eA02 (snd chan<− Ko f f e r , IATA s t r i n g , aan ta lKo f f e r s

i n t) {
13 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
14 k := Kof f e r {
15 l a b e l : Label {
16 vluchtnummer: IATA,
17 } ,
18 }
19 snd <− k
20 ko f f e r sSnd++
21 }
22 }
23 func incheckba l i eB01 (snd chan<− Ko f f e r , IATA s t r i n g , aan ta lKo f f e r s

i n t) {
24 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
25 k := Kof f e r {
26 l a b e l : Label {
27 vluchtnummer: IATA,
28 } ,
29 }
30 snd <− k
31 ko f f e r sSnd++
32 }
33 }
34 func incheckba l i eC01 (snd chan<− Ko f f e r , IATA s t r i n g , aan ta lKo f f e r s

i n t) {
35 f o r i := 0 ; i < aan ta lKo f f e r s ; i++ {
36 k := Kof f e r {
37 l a b e l : Label {
38 vluchtnummer: IATA,
39 } ,
40 }
41 snd <− k
42 ko f f e r sSnd++
43 }
44 }
45

46 func gateA01 (rec <−chan Kof f e r) {
47 f o r k := range rec {
48 fmt . Pr in t ln (”Gate A01: k” , k)
49 KoffersRec++
50 }
51 }
52

53 func gateA02 (rec <−chan Kof f e r) {
54 f o r k := range rec {
55 fmt . Pr in t ln (”Gate A02: k” , k)
56 KoffersRec++
57 }
58 }
59

60 func gateB01 (r ec <−chan Kof f e r) {
61 f o r k := range rec {

37

62 fmt . Pr in t ln (”Gate B01: k” , k)
63 KoffersRec++
64 }
65 }
66

67 func so r t001 (rec1 <−chan Ko f f e r , r ec2 <−chan Ko f f e r , snd1 chan<−
Ko f f e r , snd2 chan<− Kof f e r) {

68 f o r {
69 s e l e c t {
70 case k := <−rec1:
71 ve r taa ld := vluchtnummerVertaler [k . l a b e l . vluchtnummer]
72 i f v e r t aa ld == ”GA01” {
73 snd2 <− k
74 } e l s e i f v e r taa ld == ”GA02” {
75 snd2 <− k
76 } e l s e i f v e r taa ld == ”GB01” {
77 snd1 <− k
78 }
79 case k := <−rec2:
80 ve r taa ld := vluchtnummerVertaler [k . l a b e l . vluchtnummer]
81 i f v e r t aa ld == ”GA01” {
82 snd2 <− k
83 } e l s e i f v e r taa ld == ”GA02” {
84 snd2 <− k
85 } e l s e i f v e r taa ld == ”GB01” {
86 snd1 <− k
87 }
88 }
89 }
90 }
91 (Ditto for the rest.)
92 func so r t010 (rec1 <−chan Ko f f e r , r ec2 <−chan Ko f f e r , snd1 chan<−

Ko f f e r , snd2 chan<− Kof f e r) {
93 f o r {
94 s e l e c t {
95 case k := <−rec1:
96 ve r taa ld := vluchtnummerVertaler [k . l a b e l . vluchtnummer]
97 i f v e r t aa ld == ”GA01” {
98 snd1 <− k
99 } e l s e i f v e r taa ld == ”GA02” {

100 snd2 <− k
101 }
102 case k := <−rec2:
103 ve r taa ld := vluchtnummerVertaler [k . l a b e l . vluchtnummer]
104 i f v e r t aa ld == ”GA01” {
105 snd1 <− k
106 } e l s e i f v e r taa ld == ”GA02” {
107 snd2 <− k
108 }
109 }
110 }
111 }

Listing 5.8: Go Step 3: check-in, gate, conveyor belt

38

Chapter 6

Results

In this chapter I will discuss several results I found during my implementation
of the BHS in PSF and Go.

6.1 Processes

All the different components in the BHS are all processes in PSF. In Go I had
to create the same components on a concurrent level as in PSF. I found that for
every process in PSF I made a function in Go. These function are executed on
a concurrent level.

1 Ba l i e (BA01) =
2 Ba l i e (BA02) =
3 Ba l i e (BB01) =
4 Ba l i e (BC01) =
5 Gate (GA01) =
6 Gate (GA02) =
7 Gate (GB01) =
8 Sort (S001) =
9 (Ditto for the rest.)

10 Sort (S010) =

Listing 6.1: PSF
processes

1 func incheckba l i eA01 (snd chan<− Ko f f e r ,
IATA s t r i n g , aan ta lKo f f e r s i n t) {

2 func incheckba l i eA02 (snd chan<− Ko f f e r ,
IATA s t r i n g , aan ta lKo f f e r s i n t) {

3 func incheckba l i eB01 (snd chan<− Ko f f e r ,
IATA s t r i n g , aan ta lKo f f e r s i n t) {

4 func incheckba l i eC01 (snd chan<− Ko f f e r ,
IATA s t r i n g , aan ta lKo f f e r s i n t) {

5 func gateA01 (rec <−chan Kof f e r) {
6 func gateA02 (rec <−chan Kof f e r) {
7 func gateB01 (r ec <−chan Kof f e r) {
8 func so r t001 (rec1 <−chan Ko f f e r , r ec2

<−chan Ko f f e r , snd1 chan<− Ko f f e r , snd2
chan<− Kof f e r) {

9 (Ditto for the rest.)
10 func so r t010 (rec1 <−chan Ko f f e r , r ec2

<−chan Ko f f e r , snd1 chan<− Ko f f e r , snd2
chan<− Kof f e r) {

Listing 6.2: GO processes

39

6.2 Communication

In PSF the communication between processes is defined by the communication
section and the encapsulation in the processes. In Go you can communicate
between goroutines with channels, so for every process pair you want to com-
municate between you should create a channel.

1 sets
2 o f atoms
3 H = { snd (i d 1 , i d 2 , d) ,

r e c (i d 1 , i d 2 , d) |
4 id1 in ID, id2 in

ID, d in KOFFER}
5 communications
6 snd (i d 1 , i d 2 , d) | r e c (i d 1 ,

i d 2 , d) = comm(i d 1 , i d 2 , d
) for

7 id1 in ID, id2 in ID, d
in KOFFER

8 definitions
9 BASsysteem = encaps (H,

Ba l i e s | | Gates | | So r t e r s)

Listing 6.3: PSF communication

1 B001 := make(chan Ko f f e r ,
i n c h e c kb a l i e b u f f e r)

2 B002 := make(chan Ko f f e r ,
i n c h e c kb a l i e b u f f e r)

3 B003 := make(chan Ko f f e r ,
i n c h e c kb a l i e b u f f e r)

4 B004 := make(chan Ko f f e r ,
i n c h e c kb a l i e b u f f e r)

5 B005 := make(chan Ko f f e r ,
s o r t b u f f e r)

6 (Ditto for the rest.)
7 B018 := make(chan Ko f f e r ,

g a t ebu f f e r)
8 B019 := make(chan Ko f f e r ,

g a t ebu f f e r)

Listing 6.4: GO communication

6.3 Equations

If you look at the equations section in the PSF specification, you will see two
types of equations. The two types of equations are the ”get-label” equation
and the ”vertrek-gate” equation. There are multiple ways to translate the PSF
equations to Go. In PSF they are both equations but if you look at the trans-
lation to Go, you will see a structure and a dictionary. For the translation of
the equation section in PSF to Go, you need to have knowledge about the PSF
specification. You should know the purpose of the equations, before you can
actually translate them to Go.

The ”get-label” equation in PSF is used to get the label from a suitcase and
is used by the sorting machines. In Go we defined the suitcase and label as
structures, therefore we can use the built-in functionality of Go´s structures to
get the label.

40

1 functions
2 K : LABEL −> KOFFER
3 KL4805 : −> LABEL
4 AA77 : −> LABEL
5 MH17 : −> LABEL
6 get− l abe l : KOFFER −> LABEL
7 variables
8 l : −> LABEL
9 equations

10 [1 0 1] get− l abe l (K(l)) = l

Listing 6.5: PSF equations: get-label

1 type Label s t r u c t {
2 vluchtnummer s t r i n g
3 }
4

5 type Kof f e r s t r u c t {
6 l a b e l Label
7 }
8

9 k := Kof f e r {
10 l a b e l : Label{
11 vluchtnummer: IATA,
12 } ,
13 }
14

15 f l i gh tCode := k . l a b e l .
vluchtnummer

Listing 6.6: GO equations

The second equation, the ”vertrek-gate” equation, has the same functionality
as a lookup table. The PSF specification uses term rewriting method for its
equations, so when it encounters the left hand side of the equation, it is replaced
with the right hand side of the equation. In Go I used a dictionary for the same
result. A dictionary stores keys with values in a map, like in the code snippet
below.

1 functions
2 K : LABEL −> KOFFER
3 KL4805 : −> LABEL
4 AA77 : −> LABEL
5 MH17 : −> LABEL
6 GA01 : −> ID
7 GA02 : −> ID
8 GB01 : −> ID
9 vertrek−gate : LABEL −> ID

10 equations
11 [2 0 1] vertrek−gate (KL4805) =

GA01
12 [2 0 2] vertrek−gate (AA77) =

GA02
13 [2 0 3] vertrek−gate (MH17) =

GB01

Listing 6.7: PSF equations

1 var vluchtnummerVertaler = map [
s t r i n g] s t r i n g {}

2

3 vluchtnummerVertaler [”KL4805 ”] =
”GA01”

4 vluchtnummerVertaler [”AA77”] = ”
GA02”

5 vluchtnummerVertaler [”MH17”] = ”
GB01”

Listing 6.8: GO equations

41

42

Chapter 7

Conclusion

The purpose of this research was engineering a software application with process
algebra with the programming language Go as target. I decided I would use the
BHS located at Amsterdam Airport Schiphol as an example.

I gained knowledge about PSF and Go to implement this BHS on different
levels of abstraction. To describe the systems behaviour on a high level of
abstraction I used PSF. Go is useful to implement the behaviour of the system
on a low level of abstraction, because Go has a built-in functionality to execute
functions on a concurrent level. It is possible to communicate with channels
over these goroutines. These functionalities combined makes Go a good target
for the implementation of the PSF specification.

I implemented the BHS in three steps. Step one is transporting items of
baggage from point A to point B over a single conveyor belt. During the second
step I implemented sorting machines that would sort the suitcases in a random
direction. The last step was to make sure the sorting machines sorted the
suitcases in the right direction of the right aeroplane.

I found three main translation similarities from PSF to Go. I found that
processes in PSF could be translated to functions in Go, if you would execute
those functions on a concurrent level with goroutines. I also found that the
communication between different processes could be achieved with channels in
Go. The last thing I found was that with some knowledge of the PSF specifi-
cation, you could translate equations in different ways. The two ways I needed
was to implement a lookup table as a dictionary and I used a structure in Go
to represent a suitcase, where you could store a label in with the flight code.

43

44

Bibliography

[1] Se-pa home page. https://staff.fnwi.uva.nl/b.diertens/se-pa/.

[2] Sjouke Mauw. PSF - A Process Specification Formalism. PhD thesis,
Universiteit van Amsterdam, 1991.

[3] Psf home page. https://staff.fnwi.uva.nl/b.diertens/psf/.

[4] Amsterdam Airport Schiphol. Bagage op schiphol.

[5] Frequently asked questions go. https://golang.org/doc/faq.

[6] Go release history. https://golang.org/project/.

[7] About the go command. https://golang.org/doc/articles/go_

command.html.

[8] Rob Pike. Go at google: Language design in the service of software engi-
neering. https://talks.golang.org/2012/splash.article, 2012.

[9] Documentations go. https://golang.org/doc/.

[10] Mark Summerfield. Programming in Go: Creating Applications for the 21st
Century. Addison-Wesley, 2012.

[11] Amsterdam Airport Schiphol. Baggage at schiphol, 2016.

[12] Iata codes. http://www.iata.org/services/pages/codes.aspx.

[13] Amsterdam Airport Schiphol. Facts and figures, 2015.

[14] Go installation. https://golang.org/doc/install.

[15] Bob Diertens. Software Engineering with Process Algebra. PhD thesis,
Universiteit van Amsterdam, 2009.

[16] Daan Staudt. A case study in software engineering with psf: A domotics
application. Technical report, University of Amsterdam, Programming Re-
search Group, 2008.

45

[17] Bob Diertens. Software enigneering with process algebra: Modelling client
/ server architectures. Technical report, University of Amsterdam, Pro-
gramming Research Group, 2009.

[18] Amsterdam Airport Schiphol. Traffic review, 2015.

46

