BACHELOR INFORMATICA

UNIVERSITY OF AMSTERDAM
X

Purely event-driven program-
ming
A programming language design

Bas van den Heuvel
10343725

Wednesday 8" June, 2016

Supervisor(s): Dr. ir. B. Diertens and Dr. A. Ponse

Signed: Signees

Abstract

Purely event-driven programming is a style of programming in which the control flow is
solely organized by events. This thesis describes a programming language design for purely
event-driven programming. The language is designed to have implicit concurrency without
inversion of control. It consists of state machines that communicate through events. State
machine code is executed and scheduled by a system called MachineControl, which also
manages events. Experimentation has shown that the language is suitable for algorithms
that involve workers and for naturally event-driven systems. The language is less suitable
for algorithms that are sequential in nature, but it can still be used as a general purpose
programming language.

Contents

1 Introduction

2 A purely event-driven programming language design

2.1 State machines
Local variables and arguments
States

2.1.1
2.1.2
2.1.3
2.14

221

2.3 Events
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7

2.4 Concurrency

State transitions

Special states

2.1.5 An example state machine
2.2 MachineControl
Cycling
2.2.2 Starting a machine
2.2.3 Starting (and stopping) a program
2.2.4 Stopping machines

Event emission

Event distribution

Event reaction
Listen state
Halt reaction
Event acknowledgements

Garbage collection

3 Experimentation

3.1 Designing programs
Example: Sieve of Eratosthenes
3.2 Testing programs
3.3 Simulation in Python

3.1.1

3.3.1

3.3.2

3.4.1
3.4.2

3.4.3 Turing completeness

4 Discussion

7 Conclusion

Writing programs

Debugging
3.4 Experiments
Synchronisation problem

Starting problem

Related work

Further research

27

29

31

33

Bibliography

Acronyms

Appendices

A Sieve of Eratosthenes simulator code

B Python simulation documentation

35

37

39

41

45

CHAPTER 1

Introduction

What would a programming language without function calls, explicit concurrency and/or a
sequential control flow look like? Such a programming language would be purely event-driven.
Can it support concurrent event-driven programming without inversion of control? This thesis
proposes such a language, with experiments to answer these questions.

What is purely event-driven programming? To answer this question, another question needs
to be answered: what is event-driven programming? Event-driven programming is a programming
paradigm, but there are many ways this paradigm is interpreted. One programmer could call a
program event-driven, while another would completely disagree. So, to give a more theoretically
founded answer to this question, one more question needs to be answered first: what is an event?

An event is essentially something that happens. This can be a leaf falling from a tree, but it
can also be a concious decision being made. So, anything happening is actually an event.

An event-driven system has a control flow which is determined by events. So, event-driven
programming is a way of programming in which certain actions cause events and vice versa. As
an example, event-driven programming is widely used in User Interface (UI) programming. A
user interacting with the UT (e.g. the user clicks a button) is an event, but a window being ready
is also an event. When working with a certain system, not all events are relevant. Irrelevant
events can therefore be ignored as events.

Event-driven programming is mostly supported as an addition to classical sequential pro-
gramming. In these systems the programmer attaches functions (event handlers or callbacks) to
certain events. As opposed to having to stop a program to wait for an event to happen, the event
system will execute the registered function once the event occurs.

In [1], this programming model is called inversion of control, because the event system takes
a program’s control flow away from the programmer. Inversion of control is problematic, because
the fragmentation of program logic makes a program’s flow difficult to understand.

In [1] and [2], it is claimed that event-driven programming is suitable for concurrent program-
ming, but event-driven programming is difficult because of inversion of control. The mixture of
sequential programming and events can make programs even more difficult to understand.

In Chapter 2 on page 9, a language design for purely event-driven programming is proposed.
This section describes the thesis’ definitive language design. In Chapter 3 on page 17 experiments
are described that have changed the language. This section explains problems with earlier design
choices, leading to this definitive design. The thesis is concluded with proposals for further
research and a conclusion.

CHAPTER 2

A purely event-driven programming
language design

Following is a description of a purely event-driven programming language design. Step by step,
several concepts and mechanisms are introduced, building up to a complete programming language.
These descriptions are accompanied by code examples. The syntax in these snippets is just
an option out of infinitely many possibilities, merely chosen to make the concepts easier to
understand. It is loosely based on the syntax of C. These syntax choices are not explained,
because syntax is not the topic of this thesis.

This language is designed with concurrency in mind, which is explained in Section 2.4 on
page 15. The description of the language does not include an implementation, but it can be used
when developing one. However, as described in the introduction, this concurrency should be
implicit.

The choice made for concurrency in this language design is state machines, often simply
referred to as machines. They are the building blocks of the language. Machines describe
some behaviour, such as a computation or I/O, but they do not execute it. State machines are
completely independent, so they can be represented on a computer as an independent unit (e.g. a
process or a thread). The way state machine code can be executed also supports concurrency, as
it requires little overhead. This will be explained in following sections.

Machines can communicate through events, combining to form programs. State machines and
events are managed by a system called Machine Control (MC), which is also responsible for the
execution of state machine code.

Two diagrams are included with this language description: state machine in Fig. 2.1 and MC
in Fig. 2.2. Every part will be explained throughout this section, so they can be used as a visual
guidance.

2.1 State machines

State machines represent units that perform specific tasks. They communicate through events, so
they do not need to be aware of each others’ behaviour and contents. This makes state machines
suitable for concurrent execution. Therefore, they are designed to maintain this independence.

State machines have space for local variables. A state machine comprises an infinite number of
states and is always in such a state. Machines can switch between states through state transitions.
State machines only describe a behaviour, they do not execute it.

2.1.1 Local variables and arguments

A state machine is defined with an arbitrary amount of local variables. These can be accessed
from any state in the machine, but other machines can not reach them. This keeps the space a
machine needs constant, with the possible exception of data structures such as arrays. Arrays

might might vary in size throughout the existence of a machine. How these exceptions are handled
is up to the implementation.

These local variables are declared for an entire machine. It is not possible to declare new
variables within states. This makes the scope of variables unambiguous. It also limits the amount
of bookkeeping necessary for concurrent execution.

Besides local variables, machines can require arguments. Aside from their values being assigned
with the instantiation of a state machine, arguments are identical to local variables.

To maintain independence of machines, implementations should consider how to pass argument
values other than constants, especially when passing references to objects and the like. Using a
reference to an object would require a machine to reach the memory of the object’s creating state
machine.

2.1.2 States

In essence, a state is a piece of code. Code in a state consists of actions on variables, if-statements
and loop constructions. As the goal of this paper is to study event-driven programming as a
concept, more detail on these actions is not given. In example, provided state code is pseudo
code.

The language adds some functionality that can be used in states: state transitions and MC
and event statements. These are described in the following sections. On the other hand, return
statements do not exist in this language.

2.1.3 State transitions

State transitions are like return statements. They stop the execution of a state. The difference is
that a state transition merely changes a machine’s state, i.e. what piece of code to run. A return
statement involves much more bookkeeping, such as returning control to a context and passing
values.

If the execution of a state’s code does not reach a state transition, the machine implicitly
transitions to the listen state. This state is very important as it handles a machine’s incoming
events, as explained in Section 2.3.4 on page 13.

In example code, a state transition to state a looks as follows: => a.

2.1.4 Special states

There are three special states: the initial state, the listen state and the halt state. The initial
state is an indicator which tells the machine in which state to start. The listen state handles
events. It is implicit, meaning that it exists, but its functionality is provided by the language’s

Local variables

C:F/::E MachineList
(@

[Y Y Y Y

Eventinbox Reactions
|>/N@| EventBus

< >
States N %

Figure 2.1: A diagram of a state machine, Figure 2.2: A diagram of MC, showing the
showing local variables, the event inbox, machine list, event buss and communication
states and the path of events from inbox with state machines.

through reactions to listen state.

10

execution system. The halt state is another implicit state which makes the machine’s execution
stop. All these states are explained more elaborately in following sections.

2.1.5 An example state machine

A very simple state machine, as described above looks as follows. The declaration
init state a {...} indicates a as the machine’s initial state. The machine iterates i from 0
through n and then halts.

machine machine_1(n) {
i=0;

init state state_1 {
if (i < n) {
// do something.
i+=1;
=> state_1;

}

=> halt;

2.2 MachineControl

State machines only describe behaviour. To actually execute it, the language has a system called
MachineControl (MC). It does all the bookkeeping for execution of states and communication
through events. The management of events is a system in its own. Therefore, it is not explained
here, but in Section 2.3.

MC keeps track of all active state machines in its MachineList. The execution of a machine’s
state is called cycling. MC is always present in a program, so it can be accessed from any state.
In example code, MC is referred to by the constant ctl.

2.2.1 Cycling

The execution of the code in a machine’s state is called a cycle. The result of a cycle is the state
in which the machine results after the cycle, determined by a state transition. In order to run a
program, MC needs to make sure all machines in its MachineList get to cycle.

All machines have to be cycled. If any are left out, the result of a program could be influenced.
The program will not be able to halt, since a machine only halts after cycling its halt state. So,
some sort of scheduling needs to take place in order to cycle all machines.

The simplest way of scheduling is to treat the MachineList as a queue, cycling the first machine
and placing it in the back of the queue. Scheduling can be more advanced, for example through
analysing the duration of cycles and prioritising faster states. Anything is possible as long as
eventually all machines get cycled.

2.2.2 Starting a machine

To start a machine, this needs to be announced to MC. MC instantiates the machine by creating
space for it, initializing local variables and putting it in its initial state. The new machine is
added to MC’s MachineList. Finally, MC passes the new machine’s identity as a reference to the
requesting machine. This reference can be used for event emissions, as explained in following
sections.

For example, when machine ¢ wants to instantiate machine b and store the reference in local
variable machine_b, it should have the following code in a state:
machine_b = ctl.start(b, arguments). Remember that the variable used to store the refer-
ence has to be defined as a local variable before being able to assign anything to it.

Every machine has a context, which is the machine instantiating it. This is useful for events,
as explained in section 2.3.3 on page 13.

11

2.2.3 Starting (and stopping) a program

A program will not run unless at least one machine is started. This can be done by invoking MC
from outside state machines. Only a state machine and arguments are needed. It is, however,
possible that an implementation has additional arguments, such as a debug flag. Running
state machine a can be done by putting the following statement at the bottom of a program:
ctl.run(a, arguments).

This statement causes MC to instantiate machine a, as it would when called from a state.
This means that this first machine a will get cycled, thus running the program. Once all machines
in MC’s MachineList are in their halt state, MC is done running. At this point MC will be reset,
as described in Section 2.3.7 on page 15. It is possible to have multiple sequential run statements.
They will be run in the given order, after which the program is finished.

The first running machine has a context, like all state machines. It is, however, different from
other machines, since there is no machine starting it. The context of this machine is an empty
non-active state machine. The only reason for this is generalisation: when implementing this
language the first machine should be no different from other machines.

2.2.4 Stopping machines

A state machine’s execution stops when it reaches its halt state. This implicit state notifies
MC about the machine halting, which removes the machine from MC’s list. Depending on the
implementation, this is also the time for any garbage collection, as described in Section 2.3.7 on
page 15.

2.3 Events

At this point, the description of the language design comprises state machines and MC, a
mechanism to run them. However, the most important part is still missing: events. Events are
used for communication between machines. An event describes something that has happened.

An event is a form of message passing, with the important aspect that events do not necessarily
have a destination. State machines create events by emitting them, but they are not responsible
for delivering them to other state machines. Thus, from the state machine’s point of view, an
event is just an event, i.e. a notice that something happened. State machines are, however,
responsible for reacting to events. All event passing happens through MC, which takes care of
distribution.

An event contains two fields: a type, which is a string, and an emitter, which identifies the
machine that created the event. Events can also hold an optional value, which can be anything,
and an optional destination, which tells MC where to deliver the event to.

2.3.1 Event emission

MC holds a buffer, called the FventBus. When a machine announces an event to MC, the event is
added to the EventBus. From there, MC will distribute the event to state machines, as explained
in the next section.

Event emission is done through the emit statement. The event’s emitter is implicit.

emit ("type"); // event without value and destination
emit ("type", value); // event with value, without destination
emit (...) to machine; // event with destination

2.3.2 Event distribution

MC distributes events in its EventBus to all active machines. State machines have a queue, the
EventInbox, into which MC puts events. Events never get distributed to the EventInbox of their
emitter. If an event has a destination, it will only be distributed to that destination machine (if
it is still cycling, i.e. not in its halt state).

12

Event Machine
reactions reactions

—=> state I—=> state

type reactor type, reactor
emitter

Figure 2.3: Both reaction maps as held by MC.

Like with state machine cycling, MC is responsible for scheduling this distribution. The
language has been designed to be ignorant of this scheduling, which is why MC does not take
care of actual reactions. Reactions are handled by machines, as described in following sections.
Scheduling can be anything, such as simply distributing all events before a cycle, or maintaining
an independent event distribution process.

2.3.3 Event reaction

Purely event-driven communication starts with event emission and ends with a reaction. A
machine can assign a reaction to a type of event in the form of a state transition. The combination
of an event type and a state transition is called an EventReaction. It is also possible to make
the reaction more specific by requiring an emitter (i.e. the emitter’s identifier), which is called a
MachineReaction. A reacting machine is called the reactor.

MC contains two two-dimensional maps, one for EventReactions and one for MachineReactions,
as in Fig. 2.3. A machine can register a reaction to MC through the when statements. This stores
the given state transition in either map, first under the event’s type (combined with its emitter
in case of a MachineReaction), then under the reactor’s identifier. If there is already a reaction
for a certain type, the existing state transition gets overwritten with the new one. The actual
reaction takes place in the listen state.

Different states can require a machine to stop reacting to certain events in the future. This
can be done through the ignore statements, which remove the entry from either map.

// Register reaction.
when "type" => state;
when machine emits "type" => state;

// Ignore reaction.
ignore when "type";
ignore when machine emits "type";

This is where a machine’s context comes in handy. It allows a machine to react to some signal
from its context, without being aware of what the context actually is. This is an important aspect
of the programming language which supports abstractions and generalised code.

2.3.4 Listen state

A machine’s listen state is where the actual reaction happens. Once a machine enters the listen
state it will check the EventInbox for events. If there are events, the first one is taken from the
queue. Using MC’s reaction maps the machine will decide what to do with the event. Because
MachineReactions are more specific than EventReactions, these will be checked first. If a reaction
entry is found, the entries’ state transition will be performed. There is something else that

13

A B

state: a; state: b,
1 emit ("x")

to B => a, —
it
to B;

when B emits
"x_ack" => ay)

event "x"

when "x" => b,

2 state: listen state: listen

event "x_ack"
emit "x_ack"

I
=> to A;

=> b2

state: a, state: b,

Figure 2.4: Machine A emits an event “x” to machine B, which acknowledges.
Step 1: A emits event “x” with acknowledgment flag and assigns reaction to acknowledgement.
B assigns reaction to event “x”.
Step 2: B emits acknowledgement event “x_ack” to A and transitions to bs. A receives
acknowledgement and transitions to as.
Step 3: machines are synchronised.

happens before the state transition is taken. This has to do with event acknowledgements, which
will be explained in a following section.

If there are no reactions assigned to the event, the machine will dump it and re-enter its listen
state. If there are no events in the EventInbox, the listen state will be re-entered as well.

Events play a central role in this programming language, which makes the listen state very
important and frequently used. This is the reason why an explicit state transition to listen is
optional. When a state’s code has been executed, but no state transition occurred, there will be
an implicit transition to the listen state.

2.3.5 Halt reaction

Before halting, a machine needs to make all machines it started halt. Therefore, all machines
get instantiated with one initial reaction: when ctx emits "halt" => halt. Before announcing
its halt to MC, the machine emits an event, typed ‘halt’. So, a machine halting, will halt all
machines it started implicitly.

2.3.6 Event acknowledgements

Because of the concurrent nature of the language, machines in a program will frequently be
required to synchronise. In the context of this programming language, this means that machines
need to synchronise event handling. Suppose for example a state machine A that uses multiple
instances of a state machine B for a computation. Some B machines are done more quickly than
others. So, before A can continue it has to synchronise with all B machines.

Synchronisation could be necessary because of the nature of the program (e.g. machines need
to run at the same moment) or because it will simplify the program (as in Section 3.4.1 on
page 22). This can be done through event acknowledgements, explained visually in Fig. 2.4.

An event acknowledgment means that the reactor acknowledges a reaction taking place. This
is done by emitting a special event. The machine that sent the original event will receive this

14

acknowledgment. This machine will react to this special event with a state transition, provided
with the emit statement: emit ("type") to machine => state.

This statement automatically sets up acknowledgment handling. The event gets an acknow-
ledgement flag, which tells the receiving state machine to acknowledge its reactions. In a machine’s
listen state, before performing a state transition, this flag is checked. If necessary, the reacting
machine will emit an event. An event type is automatically generated. If an event’s type is
“type”, the acknowledgement type will be “type_ack”.

The emitter of the original event gets a reaction assigned to this acknowledgement with the
given state transition. This way, once the emitter is in its listen state and the acknowledgement
has been received, the machines become synchronised.

2.3.7 Garbage collection

Once a state machine is halted, all the space it takes is waste. Therefore, when a machine halts,
all this space needs to be wiped. All local variables have to be cleaned, including any references
to these variables.

The machine’s EventInbox needs to be deleted, as well as any events the machine has emitted.
This means that when a machine halts, all leftover events in any machine’s EventInbox and in
MC’s EventBus should be removed. Also, any reactions for this machine in MC should be deleted.
Finally, the space for the machine can be freed.

This process is completely dependent on the implementation. Were one to implement this
language in a language (i.e. simulate) with proper garbage collection, almost nothing has to be
done. A native implementation, however, would require freeing all the memory explicitly. The
latter would be the language’s actual garbage collection.

2.4 Concurrency

Because of the communication through events, state machines are independent units. They do
not need to access each others’ memory. This takes away the need to make every interaction
between state machines safe for concurrency. Communication happens through the independent
MC, which takes care of safe interaction with machines.

Another advantage of using state machines and events is the elimination of a call stack. A call
stack is necessary for one method to invoke another method. It provides a context, takes care
of results being returned and makes the program continue with the right code after the called
method is done.

In [3] this behaviour is summarized as three components: coordination, continuation and
context. Coordination makes sure the calling method waits for the called method to finish.
Continuation takes care of continuing with the following code. Context is the collection of
variables to which the called method should have access. The context aspect takes care of
restoring the proper variables once the called method is finished.

State machines and events eliminate all three of these components. Coordination requires
a program to have a specific order. State machines are independent units that can do their
work without having to wait for other machines to deliver results. This is, however, still possible
through synchronisation (i.e. event acknowledgments).

This also eliminates continuation. A machine does not need to await an event emission or
reaction to finish, so there is no need to store a continuation on some stack.

Finally, a machine’s context never changes. All local variables are declared upon instantiation
and they remain throughout the existence of the machine. Accessing variables from other machines
is done through events, so a machine will never need another machine’s context.

15

16

CHAPTER 3

Experimentation

What does it mean to test a programming language design? What it does not mean is to fully
implement a compiler or interpreter. When programming for such a working implementation
results in the discovery of design flaws, the whole process has to be started over. It does mean
to manually test programs in the language design, pointing out the design’s flaws, providing
immediate feedback.

3.1 Designing programs

Purely event-driven programming is different from classical programming, in that a program’s
structure is spread across state machines. In turn, the control flow inside such machines is spread
across states and interaction is moved to events. This makes designing programs from scratch
rather difficult.

Instead of trying to write a program directly in the desired syntax, it is wise to graphically
draw the program. State machines are very suited for this. They consist of states, which usually
are (named) circles in drawings. Transition between the states are indicated by arrows, often
labeled by a condition. A state can contain some text explaining actions it performs.

To design a program, one can start with a crude graph, showing the general flow of the
program. This design can then be refined with more states and more meaningful actions. This
means that a design might need several state machine drawings before one can actually start
programming.

Once a design is finished, it is trivial to implement it in the state machine programming
language described above. This step is not even necessary for experimenting with the language
design, since the syntax is of no matter.

3.1.1 Example: Sieve of Eratosthenes

A good example to show that purely event-driven programming is suitable for concurrent pro-
gramming is the Sieve of Eratosthenes. It is an algorithm that finds prime numbers. The Sieve
does so by starting with a number (usually the first prime number 2), marking all its multiples.
The next unmarked number is the next prime number and the process can be repeated. The
process is visually shown in Figures 3.1 and 3.2.

17

[e I N

R
O 0o No R W~ OO

w
w
-

Prime numbers ..- 5 . 7 ... Prime numbers
11.13 ...11.19. 2 3

aEle s B E o
o [B > % v B @
A D o
G Bl s @Bl
o o B w0 @] B
nn s e s @
wEe s @@
] o [o o s Bl w0 e B
101 103.105 .10? 101 .103 ... 107 .109.
111 .113.115.117.119- ..113.115 ...119.

L

11

=
o

—
"
-
o
=
~

21

[
i3

[
[
=
u
o
)

31

W
o
w
w
w
=

41

&

=
W
e
)
&
)

51

61

2

o 8
s
s

71

=
w
~
o

81

a1

g

wn
i)
wn
wn
w
-
u
)

Figure 3.1: Sieve of Eratosthenes, first iteration Figure 3.2: Sieve of Eratosthenes, second
[4]. iteration [4].

This example uses a slightly different algorithm. Instead of marking off multiples of primes, a
new prime number spawns a picker. This picker has a counter, starting at 0. Each time a new
number is tried, the counters of these sieves is incremented. If a sieve’s counter equals the prime
number that spawned it, the new number is a multiple of a prime number. So, the counter is
reset and the next number can be tested. In Python this algorithm looks as follows:

def sieve(n):
pickers = []
x =2

while n > O:
success = True

for p in pickers:
pl’counter’] += 1
if p[’counter’] =
pl’counter’]
success = False

= p[’prime’]:
=0

if success:
pickers.append ({
’prime’: Xx,
’counter’: 0})
print (’Found prime’, x)
n-=1

x +=1

To make this algorithm purely event-driven a separation into state machines needs to be made.
Looking at the code, it becomes apparent that the code can be split up into two state machines.
One state machine is the sieve itself (called Sieve), incrementing x and spawning new pickers.
The other is the picker (called Picker), incrementing its counter with each new value of z and
determining success or not.

So, each time Sieve increments x, it should let the Picker machines run. It can do so by
emitting a “run” event. The Picker machines will then increment their counter. Each of them
will emit either a “fail” or a “pass” event. If the Sieve receives a “pass” event from all Picker
machines, a prime is found. If any Picker emits “fail”, Sieve can immediately start a new round
of sieving.

However, all Picker machines need to increment their counter. Because of this, synchronisation
is required, as explained in detail in Section 3.4.1 on page 22. This means that the Sieve will
have to wait for all Picker machines to finish. For this, an acknowledgment is required for the
“run” event.

These state machines can be drawn, but the drawing for Sieve becomes cluttered and complex
due to the synchronisation. This problem can be limited by adding another state machine:

18

Figure 3.3: State machine Sieve. Figure 3.4: State machine Picker. State

State workings: setup starts workings: setup registers a reaction to “run”;
Picker Manager and registers run increments counter and either emits
reactions to “pass” and “fail”; “pass” or “fail”.

prime emits “new_prime” to
Picker Manager; incr increments x
and emits “new_x” to
Picker Manager.

Picker Manager. This machine takes care of running and synchronising Picker machines. It
also collects “fail” and “pass” events, passing them on to Sieve as a single result.

The resulting state machines are displayed in Figures 3.3, 3.4 and 3.5. Code that runs this
implementation of the Sieve of Eratosthenes is included in Appendix A on page 41.

3.2 Testing programs

Testing the state machines can be done by keeping a list of active machines and their current
states, whilst following the arrows in the graphical drawing and performing actions in states
manually. This can lead to design errors being discovered. Such errors can easily be spotted
in the graphical design, if the programmer has an understanding of their program’s flow. By
updating the graph and repeating this process, one can test and verify a program design.

3.3 Simulation in Python

Manual bookkeeping works for simple programs. However, once a program contains more machines
and machines become more complex, testing becomes more and more error prone. Therefore, a
simulation of the language in Python is provided with this thesis.

A simulation of a language means that its workings are modeled, in this case in another
programming language. Such a programming language needs the possibility to create state
machines, to run a program through some implementation of MC and all types of management
described in this thesis.

Python’s object-oriented approach is much suited for this. State machines can be implemented
as classes, as will be explained. MC can be implemented as another class, containing all necessary
bookkeeping, such as the MachineList and EventBus. Data structures such as lists and queues
are readily available in Python.

The simulator contains three classes. The class MachineControl implements MC: scheduling
of cycling, tracking state machines and distributing events. The class Event represents events. It
is only used in the simulator internally, as the creation of objects of this class has been abstracted
to methods of StateMachine. This class is the implementation of the most basic state machine,

19

ew_prime”

i < |pickers| i < |pickers|

Figure 3.5: State machine Picker Manager. State workings: setup registers reactions to
“new_prime” and “new_x”"; new_prime starts a Picker; new_x sets up a counter; run emits “run’
to all Picker machines with acknowledgement; react is the acknowledgement state for “run”,
registers reaction to a Picker’s “pass” and “fail” events; got_pass increments counter and if
enough, emits “pass” to Picker; got_fail emits “fail” to Picker; ignore ignores future “pass” and
“fail” events from all Picker machines.

)

containing only a listen and halt state. It has several methods for working with events and MC.
By creating a subclass of StateMachine, state machines can be created.

Cycle scheduling is implemented as a simple queue. Every cycle, the first machine gets cycled,
after which it is placed in the back of the queue. When a machine halts, it is removed from this
queue. Events are emitted through a method that places an Event object in MachineControl’s
EventBus. MC distributes all events on the EventBus before each cycle.

The full documentation for the Python simulator can be found in Appendix B on page 45.

3.3.1 Writing programs

The syntax for writing programs in the Python simulator is different from the syntax in the
language description in this thesis. Therefore, a translation is explained, containing examples.
Note that in these Python examples there are occurrences of “\”. This is only to make the code
correct, while still fitting on the page.

Simulating programs is done by writing state machines as subclasses of StateMachine. Meth-
ods of this class represent states. They never contain any arguments, except self, which makes
the method an instance-method, thus acting on the instance instead of the class. State transitions
are done by returning one of the class’ methods.

Local variables are created in the state machine’s __init__ method. Because a state machine
has to be set up with an EventInbox and other bookkeeping, the __init__ of the class’ superclass
should be called first. Local variables can be referred to as self.variable. The __init__
method is also where the initial state should be indicated.

20

Thesis’ syntax: Simulator’s syntax:

1 machine example { 1 class Example(StateMachine):

2 2 def __init__(self, ctl, ctx):
3 3 super().__init__(ctl, ctx)
4 4

5 varl = 3; 5 self.varl = 3

6 var2 = null; 6 self.var2 = None

7 7

8 8 self.init_state = self.setup
9 9

10 init state setup { 10 def setup(self):

11 varl = 6; 11 self.varl = 6

12 var2 = 2 * varl; 12 self.var2 = 2 * self.varl
13 13

14 => halt; 14 return self.halt

15 }

16}

Although in Python it is possible to create local variables from anywhere within a class, this
should not be done in this simulation. This is because the language simulated does not support
creating local variables within states.

Instantiating (and starting) machines is done through a method, just as emitting events and
registering reactions to them.

Thesis’ syntax: Simulator’s syntax:
1 machine_var = 1 self.machine_var = \
2 ctl.start (machine, arguments); 2 self.start_machine(machine_class,
3 3 arguments)
4 4
5 emit ("type"); 5 self.emit(’type’)
6 emit ("type", value); 6 self.emit(’type’, value=value)
7 emit ("type") to machine; 7 self.emit_to(’type’, machine)
8 emit ("type") => state; 8 self.emit(’type’,
9 9 ack_state=self.method)
10 10
11 when "type" => state; 11 self.when(’type’, self.method)
12 when machine emits "type" => state; 12 self.when_machine_emits(
13 13 ’type’, machine, self.method)
14 14
15 ignore when "type"; 15 self.ignore_when(’type’)
16 ignore when machine emits "type"; 16 self.ignore_when_machine_emits(
17 ’type’, machine)

The example code from Section 2.1.5 on page 11 looks as follows in the simulator:

class Machinel(StateMachine):
def __init__(self, ctl, ctx, n):
super () .__init__(ctl, ctx)

self.n = n
self.i = 0

self.init_state = self.state_1

def state_1(self):
if self.i < self.n:
do something
self.i += 1
return self.state_1

return self.halt

3.3.2 Debugging

With a tool for testing programs in a programming language comes the need for a debugging
toolset. Debugging can be done manually (e.g. by putting print statements in state code), but
this does not uncover the driving force of the language: events. The simulator comes with two
debugging features: state machine windows and stepped execution.

21

State: prime

Vars: n:100, x:2

Emitting

<Ev(1l):typ=new_prime,emitter=<Sieve:n=99,state=prime>

,destination=<PickerManager:state=setup>,ack=False>
->n:99, x:2

=> increment

State: increment

Vars: n:99, x:2 8

Emitting

<Ev(2):typ=new_x,emitter=<Sieve:n=99,state=increment>

,destination=<PickerManager:state=listen>,ack=False>
->n:99, x:3

=> listen

State: listen)

Figure 3.6: Debug window of the Sieve machine from the Sieve of Eratosthenes

State machine windows

When a program is run with state machine windows, MC opens a window for each state machine
started. This window contains the name of the state machine. Every time a state machine is
cycled, new information is displayed in the window. This information comprises the machine’s
current state and the resulting state of the cycle.

Local variables can be included by adding an InfoList to the state machine in the __init__
method. Every element should be a tuple, containing a Python format string [5] and a string
containing the name of the variable to be printed. These entries will be concatenated to a
comma-separated string. If any variables have changed after the cycle, their new values will be
displayed as well.

self.info = [
(’n:%d’, ’n’),
(’name:%s’, ’name’)

When a machine emits an events, this will also be displayed in its window. When a machine
is in its listen state, the event it reacts to (if any) will also be displayed. As soon as a machine
has executed its halt state and thus is halted, this will be displayed in the window’s title. When
a program is finished (or stopped by the user) the debug windows remain for inspection. An
example window is shown in Fig. 3.6.

Stepped execution

Bugs can occur in many forms, such as typing errors in events and wrong state transitions due
to if-statements. Finding these bugs through state machine debug windows can be difficult,
especially with complex state machines that cycle through many states.

The simulator supports stepped execution. This means that after each cycle, execution will
be stopped until the user presses enter. This way, the user can debug their program step by step,
showing every step in debug windows. This makes finding bugs less difficult, especially when the
user keeps their state machine diagrams at hand.

3.4 Experiments

3.4.1 Synchronisation problem

As explained in Section 2.3.6 on page 14 the language contains event acknowledgements. One
of the very first experiments surfaced the need for this important aspect of the language. The
problem, called the synchronisation problem, was actually discovered by hand, but was later
replicated using the simulator.

22

Figure 3.7: Synchronisation machine A. Figure 3.8: Synchronisation machine B.
State workings: setup starts multiple State workings: setup subscribes to
machines B; compute initialises reactions; run loops for a while and
computation, subscribes to reactions and decides success or failure; fail emits
emits “run” to machines B; count counts “fail” to context; succ emits “pass” to
number of pass signals; fail disables context.
reactions.

Suppose there are two types of state machines, machine A and machine B. Their behaviours
are displayed in Figures 3.7 and 3.8.

Machine A does some computation and manages multiple instances of machine B which do
some filtering on results. A runs the B machines simultaneously, which either fail or pass through
an event.

Passes are good, so when all B machines have passed A can produce a new computation. Fails
are not so good. As soon as A receives a failure, the results from the rest of the B machines are
unimportant, so they can be ignored. However, the computations B performs are important, so
they should still be run.

Suppose these computations of B take quite a while, except the first failure. At this point
A will ignore future events from B machines and initiate a new round of computation. It will
register the same reactions as before and tell the B machines to start their computation again.

In the meantime, however, the still running B machines have still emitted their fails and
passes. All of these will end up in A’s EventInbox. So when A has left the compute state and
entered the listen state, it will treat these events as if they originate from the latest round of
computation.

This can lead to unexpected behaviour and faulty computations. It is possible that A reacts
to a failure, while actually all B machines pass the relevant computation. The opposite is possible
as well, if A counts enough passes, while actually a B emitted a failure.

The solution to this problem is synchronisation. Before A starts a new computation, it will
have to wait for all B machines to finish. This can be done by emitting a “sync” event with
an acknowledgement. In stead of immediately turning the reactions back on, this happens per
machine upon receiving the acknowledgement. The working machines A’ and B’ are displayed in
Figures 3.9 and 3.10.

3.4.2 Starting problem

As explained in Section 2.3.4 on page 13, filtering of events is done by state machines. In an
earlier design this filtering was done by MC upon event distribution. However, testing programs
in the simulator showed a problem with this. This does show the importance of the simulator, as
the problem would not have been found with only manual testing.

Suppose event filtering is done by MC upon event distribution. Figures 3.11 and 3.12 show
two state machines A and B. A starts a machine B and immediately emits “run” to it. B’s first

23

Figure 3.9: Synchronisation machine A’. Figure 3.10: Synchronisation machine
State workings: setup starts multiple B’. State workings: setup subscribes to

machines B; compute initialises reactions, including “sync” to listen;
computation and emits “sync” to run loops for a while and decides
machines B; count counts number of success or failure; fail emits “fail” to

pass signals; fail disables reactions; react context; succ emits “pass” to context.
subscribes reactions to emitter.

state registers a reaction to this event.

However, MC is implemented in the simulator to distribute all events before each cycle. This
means that the “run” event will be distributed before B has been able to register its reaction to
it. Thus, MC will not put the event in B’s EventInbox. This means that B will never perform its
computation and neither A or B will ever halt.

There are multiple ways to solve this problem without changing the language design. The
implementation could be changed, so that event distribution is smart and will be scheduled to
avoid this problem. However, this would make the behaviour of the language depend on the
implementation, which is undesirable.

The problem can be also avoided by letting A wait for B to setup its reactions through an
event and extra states. This, however, requires extra states just to work around a problem which
can occur in many programs.

Thus, by changing the language design to filter events in a machine’s listen state, the entire
problem has been removed. A downside is that machines will need to access MC’s reaction maps
frequently, which in a concurrent implementation could cause overhead. It is also possible to put
the reaction maps in the state machines themselves, but this would cause each machine to have
more overhead for bookkeeping.

3.4.3 Turing completeness

An important aspect of programming language design is Turing completeness. It originates from
the Church-Turing Thesis. This thesis states that “a function is effectively computable if its
values can be found by some purely mechanical process.” Such a purely mechanical process is the
Turing machine.

The Turing machine consists of an infinitely large tape (i.e. infinite memory), a tape head,
a finite number of states and a state table. The machine is always in a state. An entry in the
state table contains an action (a direction in which to move the tape head) and a state transition.
The state head reads a character from the tape, which in combination with the current state is
used to determine the action and next state. The Turing machine can compute all effectively
computable functions.

A programming language is Turing complete if and only if it can be used to compute all
effectively computable functions. As the Turing machine is Turing complete, a programming
language is Turing complete if it can be simulated in a Turing machine. This also works vice

24

start —

Figure 3.11: Start Figure 3.12: Start
problem machine A. problem machine B.
State workings: setup ~ State workings: setup
starts a machine B, registers reaction to
registers reaction to “run”; run does some
“done” and emits computation and emits
“run”. “done”.

versa, i.e. if a Turing machine can be simulated in the programming language.

The (simulation of the) programming language described in this thesis is Turing complete.
A simulation of the Turing machine has successfully been programmed. Although no computer
exists with infinite memory, this requirement is often ignored. Another way to look at it is that
the language is required to be able to maintain an arbitrary amount of variables. The simulation

consists of two state machines: the TuringMachine (see Fig. 3.13) and the TuringTape (see
Fig. 3.14).

25

start —
“h lt71
read listen —— dump

“r” / “R” / “N”

start

“R»
move_right
Figure 3.13: State Figure 3.14: State machine TuringT ape.
machine State workings: setup registers reactions to
TuringMachine. State actions; read emits the character under the
workings: setup starts tape head; action writes the action’s
TuringTape and character; move_left moves the tape head left,
registers reaction to making extra space if necessary; move_right
“read”; step determines moves the tape head right, making extra
action and next state and space if necessary; dump prints the full
emits the action. contents of the tape.

26

CHAPTER 4

Discussion

The simulation shows that the language design is suitable for purely event-driven programming.
Problems found through experimentation could be solved by changing the language design.

The language design successfully avoids inversion of control. A programmer is fully in control
of The control flow of a program. However, designing programs is still difficult. The language
requires a different mindset from regular sequential programming. Drawing state machines and
turning them into code is a good way to design programs, although complex machines require
complex drawings.

The usage of state machines as independent units supports the notion that event-driven
programming is suitable for concurrent execution. This independence also makes thinking
in concurrency less complicated. Although the program might stumble upon synchronisation
problems, most concurrency is implicit because of the communication through events.

There is, however, a flaw in the language design. When a state machine is in its listen state
and no events are emitted, it will still execute code. MC is responsible for the distribution of all
events and for managing all state machines. Therefore, MC should be able to determine when
a machine is actually unnecessarily executing code. This busy loop can be avoided by making
machines enter an idle state when they are in the listen state and there are no events. MC can
then skip cycling machines in the idle state until it has distributed an event.

27

28

CHAPTER 5

Related work

In [2], abstractions to the programming language C to write event-driven programs are introduced.
Its domain is embedded systems with limited resources. This means that programs should have
little overhead and small size. Therefore, the use of explicit state machines is avoided. This
is done by introducing protothreads. They run inside a function and have minimal overhead.
Protothreads can be used to simplify event-driven programs with blocking wait abstractions.

In [6], a library, libasync, is introduced that uses event callbacks for blocking I/O. The paper
states that thread programming is difficult, thus being more prone to bugs. Although the library
is designed to avoid the need for locks and the like, the use of complicated callbacks does not
solve the difficulty problem. It does allow the programmer to focus more on their program than
on managing threads.

In [1], an event-driven extension to Scala is proposed. An actor library is available for
Scale, which is an abstraction to concurrency through threads. The paper states problems with
event-driven programming based on callbacks and with programming with threads. It changes
the actor library to an event-driven library.

The research in [7] is similar to the research in this thesis. The paper describes a programming
language P, comprised of state machines that communicate through events. An important
difference is that in P events are handled statically in states. This means that every state contains
state transitions for events, opposed to dynamically assigning state transitions through the listen
state. P also supports program validation in its compiler.

29

30

CHAPTER 6

Further research

The programming language design described in this thesis is merely the foundation of an actual
programming language. There are two options: extend the design so that a compiler can be made
for it, or embed the language in another language (such as Haskell).

Depending on the language of choice, a syntax has to be defined. Also, choices need to be
made on how events are to be represented. To make a compiler, there are more decisions to
be made. Will the language be statically or dynamically typed? How will state machines be
represented in memory and how can they be accessed from MC?

In both cases, the suitability for concurrency needs to be kept in mind. This means that the
way values are passed with events should be devised. In the Python simulator it is possible to pass
any value, even though that value is a memory reference. When state machines are implemented
as independent thread-like units, simply passing references should not be possible in such a naive
manner. However, leaving the programmer responsible for safe concurrency should be avoided.
Designing a system for this is a research on its own.

Another field of further research is the verification of purely event-driven programs. Just as
the validation in P [7], it should be possible to validate programs in the language described in
this thesis. A possibility for this is to provide a projection onto Program Algebra (PGA), which
already has support for state machines [8]. In [9, p. 30-64], this is called services. In [10], a good
example of the simulation of Turing machines is provided. A program’s semantics can then be
verified through Basic Polarized Process Algebra (BPPA). This can also be done by simulating
purely event-driven programming in Process Specification Formalism (PSF) [11].

31

32

CHAPTER 7

Conclusion

The research question this thesis has tried to answer is: is it possible to program using only
events? And if so, what would it look like? Can inversion of control be avoided? Can concurrency
be supported implicitly?

This thesis successfully describes a purely-event driven programming language. Although
there is much to be done to be able to actually program in the language, concurrency is implicit
and clear. Theoretical overhead is kept to a minimum and inversion of control is avoided.

This novel type of programming gives way to new algorithms and redesigns of existing
algorithms. Experimentation has shown that this type of purely event-driven programming is
very suitable for algorithms that have an obvious master/worker structure (such as the Sieve
of Eratosthenes). The language is also suitable to program systems that are event-driven by
nature (for example an elevator or user interface). Although the language can be used to program
algorithms that require some form of sequentiality, this seems more of a hassle than to have
immediate benefits. Nevertheless, the language can be used as a general purpose programming
language.

33

34

Bibliography

Philipp Haller and Martin Odersky. ‘Event-based programming without inversion of control’.
In: Modular Programming Languages. Springer, 2006, pp. 4-22.

Adam Dunkels et al. ‘Protothreads: simplifying event-driven programming of memory-
constrained embedded systems’. In: Proceedings of the 4th international conference on
Embedded networked sensor systems. Acm. 2006, pp. 29-42.

Gregor Hohpe. ‘Programming without a call stack-event-driven architectures’. In: Objekt
Spektrum (2006).

SKopp. Sieve of Eratosthenes animation. Creative Commons Attribution-Share Alike 3.0
Unported license. 2011. URL: https://commons.wikimedia.org/wiki/File:Sieve_of_
Eratosthenes_animation.gif (visited on 06/06/2016).

Python Software Foundation. Python 3.4.4 documentation - Built-in types: printf-style
String Formatting. 2016. URL: https://docs.python.org/3.4/library/stdtypes.html#
printf-style-string-formatting (visited on 06/06/2016).

Frank Dabek et al. ‘Event-driven programming for robust software’. In: Proceedings of the
10th workshop on ACM SIGOPS European workshop. ACM. 2002, pp. 186-189.

Ankush Desai et al. ‘P: safe asynchronous event-driven programming’. In: ACM SIGPLAN
Notices 48.6 (2013), pp. 321-332.

Jan A Bergstra and Alban Ponse. ‘Combining programs and state machines’. In: The
Journal of Logic and Algebraic Programming 51.2 (2002), pp. 175-192.

Jan A Bergstra and Cornelis A Middelburg. Instruction Sequences for Computer Science.
Vol. 2. Springer Science & Business Media, 2012.

Jan A Bergstra and Alban Ponse. ‘Execution architectures for program algebra’. In: Journal
of Applied Logic 5.1 (2007), pp. 170-192.

Bob Diertens. ‘Software Engineering with Process Algebra’. PhD thesis. University of
Amsterdam, 2009.

35

https://commons.wikimedia.org/wiki/File:Sieve_of_Eratosthenes_animation.gif
https://commons.wikimedia.org/wiki/File:Sieve_of_Eratosthenes_animation.gif
https://docs.python.org/3.4/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3.4/library/stdtypes.html#printf-style-string-formatting

36

Acronyms

BPPA Basic Polarized Process Algebra. 31
MC Machine Control. 9-15, 19, 20, 22-24, 27, 31

PGA Program Algebra. 31

PSF Process Specification Formalism. 31

UI User Interface. 7

37

38

Appendices

39

10

11

12

13

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

APPENDIX A

Sieve of Eratosthenes simulator code

from simulator import MachineControl, StateMachine

class Sieve(StateMachine):

def

def

def

def

__init__(self, ctl, ctx, n):

super() .__init__(ctl, ctx)
self.n = n
self.x = 2

self .manager = None
self.info = [

(’n:%d’, ’n’),

(’X:o/ud’,)X’),
self.init_state = self.setup

__repr__(self):

return ’<Sieve:n=)d,state=Ys>’) (self.n, self.current_state.__name__)

setup(self):
if self.n < O:
return self.halt

self .manager = self.start_machine(PickerManager)

self.when_machine_emits(’pass’, self.manager, self.prime)
self.when_machine_emits(’fail’, self .manager, self.increment)

return self.prime

prime(self):
self.n =1

print (’FOUND PRIME %d, %d left’ % (self.x, self.n))

if self.n ==

41

40

41

42

43

44

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

return self.halt
self .emit_to(self.manager, ’new_prime’, value=self.x)
return self.increment

def increment(self):
self.x += 1

self.emit_to(self.manager, ’new_x’, value=self.x)

class PickerManager (StateMachine):

def __init__(self, ctl, ctx):
super().__init__(ctl, ctx)

self .pickers = []
self.i = 0
self.togo = 0
self.current_x = 0

self.init_state = self.setup

def __repr__(self):
return ’<PickerManager:state=/,s>’ 7 (self.current_state.__name__)
def setup(self):
self .when_machine_emits(’new_prime’, self.ctx, self.new_prime)
self.when_machine_emits(’new_x’, self.ctx, self.new_x)

def new_prime(self):
self .pickers.append(self.start_machine(Picker, self.event.value))

def new_x(self):
self.i =0
self .togo = len(self.pickers)
self.current_x = self.event.value

return self.run_pickers

def run_pickers(self):
if self.i < len(self.pickers):
self.emit_to(self.pickers[self.i], ’run’, value=self.current_x,
ack_state=self.listen_picker)
self.i += 1

return self.run_pickers
def listen_picker(self):
if self.event.value == self.current_x:
m = self.event.emitter
self .when_machine_emits(’pass’, m, self.got_pass)

self .when_machine_emits(’fail’, m, self.got_fail)

def got_pass(self):

42

self.togo -= 1
if self.togo ==
self.emit_to(self.ctx, ’pass’)

def got_fail(self):
self.emit_to(self.ctx, ’fail’)

self.i = 0
return self.unlisten_pickers

def unlisten_pickers(self):
if self.i < len(self.pickers):
m = self.pickers[self.i]
self.ignore_when_machine_emits(’pass’, m)
self.ignore_when_machine_emits(’fail’, m)

self.i +=1
return self.unlisten_pickers

class Picker(StateMachine) :

if

def __init__(self, ctl, ctx, x):
super() .__init__(ctl, ctx)

self.x = x
self.count = 0O

self.info = [
()X:%d)’)X)),
(’count:%d’, ’count’),

self.init_state = self.setup

def __repr__(self):
return ’<Picker:x=Jd,count=Jd,state=Ys>’ % (

self.x, self.count, self.current_state.__name__)

def setup(self):
self.when(’run’, self.run)

def run(self):
self.count += 1

if self.count == self.x:
self.count = 0
self.emit(’fail’)

else:
self.emit(’pass’)

__name__ == ’__main__"’:

ctl = MachineControl(debug=False, step=False)
ctl.run(Sieve, 100)

43

44

APPENDIX B

Python simulation documentation

45

Purely Event-Driven Programming Python Simulation Documentation, Release 1.0

Simulates a purely event-driven programming language.

This simulator is part of a computer science bachelor’s thesis for the University of Amsterdam, by Bas van den Heuvel.
It follows all concepts introduced in this thesis. The purpose is to be able to test and refine those concepts.

The scheduling method is deterministically sequential. No concurrent execution is implemented.
Classes:

* MachineControl: manages and schedules state machines and events

» Event: event for communication between state machines

 StateMachine: superclass for all possible state machines

class simulator.simulator.Event (typ, emitter, value=None, destination=None, ack=False)
An event for interaction between state machines.

__init__ (typ, emitter, value=None, destination=None, ack=False)
Initialize the event.

Parameters
* typ — the event’s type string
* emitter — the StateMachine emitting the event
Keyword Arguments
* value — value to transmit (default None)
¢ destination — the StateMachine the event should end up with (default None)
 ack — whether the receiving machine should emit an acknowledgement (default False)

class simulator.simulator.MachineControl (debug=False, step=False)
Manage and schedule state machines and events.

Every program created with this simulator should have an instance of this class. Starting a program goes through
this instance, as well as instantiating state machines and sending events.

Execution of its machine’s states happens through cycles. The scheduling for this is sequential and very mini-
malistic: the first machine in its queue gets cycled after which it gets replaced at the end of the queue.

It can be said that there is no event scheduling. Before each state cycle, all events in the event buss are distributed
to their respective state machines.

__init__ (debug=False, step=False)
Initialize a machine control.

It setups up a machine list, which in this implementation is a queue. Reaction maps are created as dictio-
naries, and the event buss is another queue.

The ctx variable is not yet set. This happens when the simulator is started.
Keyword Arguments

* debug — opens a window for each state machine showing state and event information if
True (default True)

* step — allows one to cycle stepwise (default False)

add_event_reaction (fyp, reactor, state)
Add a reaction to an event.

Parameters

* typ —the event’s type string

46 CONTENTS

Purely Event-Driven Programming Python Simulation Documentation, Release 1.0

e reactor — the StateMachine that should react
¢ state - the state the machine should transition to, a method

add_machine_reaction (typ, emitter, reactor, state)
Add a reaction to a state machine’s event.

Parameters
* typ - the event’s type string
* emitter - the event’s emitting StateMachine
* reactor — the StateMachine that should react
¢ state — the state the machine should transition to, a method

cycle ()
Distribute events, cycle a machine and return whether any are left.

When the machine queue is empty, False is returned. Otherwise, True is returned.

If debuggin is on, the cycles machine’s state before and after the cycle is shown in the machine’s debuggin
window, accompanied by any variables indicated in the machine. If these variables have changed after the
cycle, the changed values are shown as well.

debug_aftercycle (machine, p_state, n_state, p_var_str)
Send info to a machine’s debug window after a cycle.

First the machine’s variables are compared to its variables before the cycle. If they are changed, they are
displayed. If the machine was in its listen state and reacted to an event, this event is displayed. Finally, if
the cycle resulted in a state transition, the new state is displayed.

If the machine cycled its halt state, nothing is to be done.
Parameters
* machine - the StateMachine to show debug information for
* p_state - the machine’s state before the cycle
* n_state —the machine’s state after the cycle
* p_var_str — the machine’s variable string before the cycle

debug_precycle (machine)
Send info to a machine’s debug window before a cycle.

First the machine’s current state is show. After this, if the machine has indicitated any variables as infor-
mation, these are shown as well.

Parameters machine — the StateMachine to show debug information for

distribute_events ()
Distribute an event to machines and return whether any are left.

If an event has a destination and that destination is still alive (i.e. not halted), the event is put into that
machine’s inbox. Otherwise, the event is put into the inbox of all live machines, except the event’s emitter.

If an event has been distributed, True is returned. Otherwise, False is returned.

emit (event)
Add an event to the event buss.

If debugging is on, the event is displayed in the emitter’s debug window.

Parameters event — the to be emitted Event

CONTENTS 47

Purely Event-Driven Programming Python Simulation Documentation, Release 1.0

filter_ event (machine, event)
Returns a state if a machine should react to an event.

If a reaction exists, the machine’s reaction state is returned. Otherwise, None is returned.
First machine reactions is checked, because such reactions are more specific and thus have priority.
Parameters
* machine - the reacting state machine, a StateMachine
¢ event — the event to be checked, an Event

halt (machine)
Halt a machine.

If debuggin is on, the machine’s debuggin window’s title is altered to include ‘HALTED’ and the window’s
stdin pipe is closed.

remove_event_reaction (typ, reactor)
Remove a reaction to an event.

Parameters
* typ — the event’s type string
* reactor — the StateMachine that should ignore the event

remove_machine_reaction (typ, emitter, reactor)
Remove a reaction to a state machine’s event.

Parameters
* typ - the event’s type string
* emitter - the event’s emitting StateMachine
* reactor — the StateMachine that should ignore the event

reset ()
Reset machine control.

This prepares it for a next run. Python garbage collects itself, but in an actual implementation, all these
fields need to be emptied carefully.

run (machine_cls, *args, **kwargs)
Start a state machine and cycle until all machines have halted.

A context is created for this first machine, by instantiating the StateMachine superclass without a context.
Parameters
* machine_cls - a StateMachine subclass
* xargs/*xkwargs — any arguments the state machine takes

start_machine (machine_cls, ctx, *args, **kwargs)
Start a state machine.

Initializes a machine, given arbitrary arguments, and adds it to the machine queue. After this, event reaction
to ‘halt’ is added.

If debugging is turned on, this also starts a debug window, able to show state and event information.
Parameters

* machine_cls — a StateMachine subclass

48 CONTENTS

Purely Event-Driven Programming Python Simulation Documentation, Release 1.0

e ctx — the state machine that starts this new machine
* xargs/*xkwargs — any arguments the state machine takes

class simulator.simulator.StateMachine (ctl, ctx)
Represent a state machine.

To create purely event-driven programs, one can subclass this class. The __init _ method should be extended
with local variables and an initial state, but first call super().__init () to prepare the machine.

States can be implemented by adding methods to the class. The initial state can be indicated by setting
self.init_state to the preferred state method in __init__. Loops are not impossible, but should not be used as
they do not exist in the language proposed by this thesis.

Do not override listen and halt, this will break the simulator. However, referring to both states is no problem
(and usually necessary).

The current event can be referred to through self.event. Do not mutate this variable.

__init_ (ctl, ctx)
Initialize the state machine.

Prepares the machine for execution and prepares event processing necessities.
Parameters
e ctl — a MachineControl instance
e ctx — the machine’s context, a StateMachine

cycle ()
Run the current state and determine the next.

If no next state is obtained, the new state will be ‘listen‘.

emit (typ, value=None)
Emit an event.

Parameters typ — the event’s type string
Keyword Arguments value — value to transmit with the event (default None)

emit_to (destination, typ, value=None, ack_state=None)
Emit an event to a machine.

Parameters
* destination - the StateMachine to send the event to
* typ — the event’s type string
Keyword Arguments
¢ value — value to transmit with the event (default None)
* ack_state — a state for acknowledgement, a method

If ack_state is given, the receiving machine will send an acknowledgement event. When the emitting
machine recieves this event, it will transition to the given state.

filter_event (event)
Return a state if a reaction to the event exists.

Parameters event — the Event

CONTENTS 49

Purely Event-Driven Programming Python Simulation Documentation, Release 1.0

halt ()
Halt state for all machines.

Do not extend or override this method.
First emits ‘halt’, which halts all child machines. Then MachineControl is told to halt the machine.

ignore_when (typ)
Remove an event reaction.

Besides ignoring further such events, all events from the given machine and of the given type in the
machine’s inbox are removed.

Parameters type — the event’s type string

ignore_when_machine_emits (typ, machine)
Remove a machine event reaction.

Besides ignoring further such events, all events from the given machine and of the given type in the
machine’s inbox are removed.

Parameters
* typ — the event’s type string
* machine - the event’s emitting StateMachine

listen()
Listen state for all machines.

Do not extend or override this method.

Checks the event inbox for any events and possible reactions. If an acknowledgement is required, this is
sent.

start_machine (machine_cls, *args, **kwargs)
Instantiate and start a machine.

Parameters
* machine cls — a StateMachine subclass
¢ xargs/*xkwargs — any arguments the state machine takes

var_str ()
Create a string of formatted variables.

self.info should contain a list of tuples with a format string and the name of a variable. This method
aggregates them into a comma-separated string containing these formatted values.

when (typ, state)
Add an event reaction.

Parameters
* typ — the event’s type string
e state — the state to transition to, a method

when_machine_emits (typ, machine, state)
Add a machine event reaction.

Parameters
* typ — the event’s type string

* machine - the emitting StateMachine

50 CONTENTS

Purely Event-Driven Programming Python Simulation Documentation, Release 1.0

e state — the state to transition to, a method

class simulator.debug_window.DebugWindow (title="State Machine’)
Create a Tk window for displaying debug messages.

The Window class in this script is the actual window. By invoking this file directly, such a window is created.
This window reads from stdin. This class does exactly that. It runs this script as a subprocess, linking its stdin
to a writable buffer.

__init__ (title=’State Machine’)
Initialize a debug window.

Opens a Tk window in a subprocess, in text-mode which allows the stdin pipe to be used for text directly.
Keyword Arguments title — the window’s initial title (default ‘State Machine’)

close ()
Close the window’s stdin pipe.

This does not actually close the window, only the stream. The window is kept open so the user can analyse
states even after a program is finished.

set_title (title)
Set the window’s title.

Parameters title — the title

write (fext)
Write a line to the window.

The window might have been closed by the user or some different event. This is ignored.
Parameters text — text excluding newline

class simulator.debug_window.Window
Show a Tk window with scrollable text from stdin.

Checks stdin for a new line every one millisecond. If the line starts with a ‘#’, the rest of the line is used as a
new title for the window. Otherwise, the line is appended to the textfield, including the newline character.

__init_ ()
Initialize the window.

Creates a frame, holding a srollable textfield. Finally reading from stdin is initiated.

do_read ()
Try to read a line from stdin.

process_line (line)
Process a line for debug display.

If a line starts with ‘#’, change the window’s title. Otherwise, write the line to the textbox.
Parameters line — the line to be processed, including newline character

write_text (fext)
Write text to the end of the textfield.

Parameters text — the text to be added to the textfield.

simulator.debug_window.main ()
Make stdin nonblocking and open a window.

simulator.debug_window.make_nonblocking (fh)
Make a file nonblocking.

CONTENTS 51

Purely Event-Driven Programming Python Simulation Documentation, Release 1.0

fentl is a C system call, used to modify file descriptors. The operation used (F_SETFL) sets the file descriptor’s
flags.

The argument to this function call uses F_GETFL, which gets the currently set flags. These are combined with a
new flag: O_NONBLOCK. This flag makes sure no calls to the file cause the process to wait, i.e. nonblocking.

52 CONTENTS

	Introduction
	A purely event-driven programming language design
	State machines
	Local variables and arguments
	States
	State transitions
	Special states
	An example state machine

	MachineControl
	Cycling
	Starting a machine
	Starting (and stopping) a program
	Stopping machines

	Events
	Event emission
	Event distribution
	Event reaction
	Listen state
	Halt reaction
	Event acknowledgements
	Garbage collection

	Concurrency

	Experimentation
	Designing programs
	Example: Sieve of Eratosthenes

	Testing programs
	Simulation in Python
	Writing programs
	Debugging

	Experiments
	Synchronisation problem
	Starting problem
	Turing completeness

	Discussion
	Related work
	Further research
	Conclusion
	Bibliography
	Acronyms
	Appendices
	Sieve of Eratosthenes simulator code
	Python simulation documentation

